Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(23): e202400579, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38350020

RESUMO

Efficient tools for controlling molecular functions with exquisite spatiotemporal resolution are much in demand to investigate biological processes in living systems. Here we report an easily synthesized caged dexamethasone for photo-activating cytoplasmic proteins fused to the glucocorticoid receptor. In the dark, it is stable in vitro as well as in vivo in both zebrafish (Danio rerio) and Xenopus sp, two significant models of vertebrates. In contrast, it liberates dexamethasone upon UV illumination, which has been harnessed to interfere with developmental steps in embryos of these animals. Interestingly, this new system is biologically orthogonal to the one for photo-activating proteins fused to the estrogen ERT receptor, which brings great prospect for activating two distinct proteins down to the single cell level.

2.
Cells ; 11(15)2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35892595

RESUMO

During vertebrate development, embryonic cells pass through a continuum of transitory pluripotent states that precede multi-lineage commitment and morphogenesis. Such states are referred to as "refractory/naïve" and "competent/formative" pluripotency. The molecular mechanisms maintaining refractory pluripotency or driving the transition to competent pluripotency, as well as the cues regulating multi-lineage commitment, are evolutionarily conserved. Vertebrate-specific "Developmental Potential Guardians" (vsDPGs; i.e., VENTX/NANOG, POU5/OCT4), together with MEK1 (MAP2K1), coordinate the pluripotency continuum, competence for multi-lineage commitment and morphogenesis in vivo. During neurulation, vsDPGs empower ectodermal cells of the neuro-epithelial border (NEB) with multipotency and ectomesenchyme potential through an "endogenous reprogramming" process, giving rise to the neural crest cells (NCCs). Furthermore, vsDPGs are expressed in undifferentiated-bipotent neuro-mesodermal progenitor cells (NMPs), which participate in posterior axis elongation and growth. Finally, vsDPGs are involved in carcinogenesis, whereby they confer selective advantage to cancer stem cells (CSCs) and therapeutic resistance. Intriguingly, the heterogenous distribution of vsDPGs in these cell types impact on cellular potential and features. Here, we summarize the findings about the role of vsDPGs during vertebrate development and their selective advantage in evolution. Our aim to present a holistic view regarding vsDPGs as facilitators of both cell plasticity/adaptability and morphological innovation/variation. Moreover, vsDPGs may also be at the heart of carcinogenesis by allowing malignant cells to escape from physiological constraints and surveillance mechanisms.


Assuntos
Células-Tronco Pluripotentes , Animais , Carcinogênese/metabolismo , Diferenciação Celular/fisiologia , Crista Neural , Células-Tronco Pluripotentes/metabolismo , Vertebrados
3.
Nat Commun ; 7: 10318, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26754771

RESUMO

The non-canonical Wnt/planar cell polarity (Wnt/PCP) pathway plays a crucial role in embryonic development. Recent work has linked defects of this pathway to breast cancer aggressiveness and proposed Wnt/PCP signalling as a therapeutic target. Here we show that the archetypal Wnt/PCP protein VANGL2 is overexpressed in basal breast cancers, associated with poor prognosis and implicated in tumour growth. We identify the scaffold p62/SQSTM1 protein as a novel VANGL2-binding partner and show its key role in an evolutionarily conserved VANGL2-p62/SQSTM1-JNK pathway. This proliferative signalling cascade is upregulated in breast cancer patients with shorter survival and can be inactivated in patient-derived xenograft cells by inhibition of the JNK pathway or by disruption of the VANGL2-p62/SQSTM1 interaction. VANGL2-JNK signalling is thus a potential target for breast cancer therapy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias da Mama/genética , Carcinoma Ductal de Mama/genética , Carcinoma Lobular/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Sistema de Sinalização das MAP Quinases/genética , Proteínas de Membrana/genética , RNA Mensageiro/metabolismo , Via de Sinalização Wnt/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Western Blotting , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patologia , Carcinoma Lobular/metabolismo , Carcinoma Lobular/patologia , Linhagem Celular Tumoral , Ensaios de Migração Celular , Movimento Celular/genética , Polaridade Celular , Proliferação de Células/genética , Variações do Número de Cópias de DNA , Embrião não Mamífero , Feminino , Humanos , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Espectrometria de Massas , Proteínas de Membrana/metabolismo , Camundongos , Microscopia Eletrônica , Pessoa de Meia-Idade , Transplante de Neoplasias , Prognóstico , Modelos de Riscos Proporcionais , Proteína Sequestossoma-1 , Xenopus
4.
Biol Aujourdhui ; 207(3): 201-17, 2013.
Artigo em Francês | MEDLINE | ID: mdl-24330973

RESUMO

Pluripotency is a transitory state during vertebrate development. A pluripotent cell can theoretically acquire all cell fates of the organism. During ontogenetic dynamics, loss of pluripotency is associated with a progressive acquisition of a specific genetic program, which is determined both by instructions received and by cell position in the whole organism. Pluripotent embryonic stem cells can be isolated and cultured in vitro indefinitely. Using mammalian embryonic stem cells (ESCs), it has been possible to identify the factors involved in the establishment and maintenance of pluripotency state. In this review, we will describe recent scientific advances in the understanding of pluripotency, the molecular actors involved in such a regulation and their functional conservation during evolution. We shall focus on new concepts, obtained from the study of vertebrate model organisms, to shed light on the cell transition from pluripotency to differentiated state, and shall recapitulate fundamental and clinical applications of pluripotent cells, of "somatic cell nuclear transfer" (SCNT), of induced nuclear reprogramming in vitro and future perspectives of in vivo applications. Our results, in the xenopus, concerning the first in vivo induced nuclear reprogramming might open new perspectives about the understanding of cell plasticity in an integrated context. Our analyses sought to encourage new and alternative clinical approaches to achieve in situ tissue regeneration.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes , Animais , Evolução Biológica , Diferenciação Celular , Células Cultivadas , Meios de Cultura , Embrião de Mamíferos , Células-Tronco Embrionárias , Humanos , Modelos Animais , Técnicas de Transferência Nuclear , Fatores de Transcrição/fisiologia , Vertebrados , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA