Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 14(10): 2281-8, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26947068

RESUMO

Forced overexpression and/or downregulation of proteins regulating epithelial-to-mesenchymal transition (EMT) has been reported to alter metastasis by changing migration and stem cell capacity of tumor cells. However, these manipulations artificially keep cells in fixed states, while in vivo cells may adapt transient and reversible states. Here, we have tested the existence and role of epithelial-mesenchymal plasticity in metastasis of mammary tumors without artificially modifying EMT regulators. In these tumors, we found by intravital microscopy that the motile tumor cells have undergone EMT, while their epithelial counterparts were not migratory. Moreover, we found that epithelial-mesenchymal plasticity renders any EMT-induced stemness differences, as reported previously, irrelevant for metastatic outgrowth, because mesenchymal cells that arrive at secondary sites convert to the epithelial state within one or two divisions, thereby obtaining the same stem cell potential as their arrived epithelial counterparts. We conclude that epithelial-mesenchymal plasticity supports migration but additionally eliminates stemness-enhanced metastatic outgrowth differences.


Assuntos
Neoplasias da Mama/patologia , Carcinoma Ductal/patologia , Transição Epitelial-Mesenquimal , Células-Tronco Neoplásicas/metabolismo , Animais , Antígenos Transformantes de Poliomavirus/genética , Antígenos Transformantes de Poliomavirus/metabolismo , Neoplasias da Mama/etiologia , Neoplasias da Mama/metabolismo , Caderinas/antagonistas & inibidores , Caderinas/genética , Caderinas/metabolismo , Carcinoma Ductal/etiologia , Carcinoma Ductal/metabolismo , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Knockout , Camundongos SCID , Células-Tronco Neoplásicas/citologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Interleucina-2/deficiência , Receptores de Interleucina-2/genética
2.
Cell ; 161(5): 1046-1057, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-26000481

RESUMO

Most cancer cells release heterogeneous populations of extracellular vesicles (EVs) containing proteins, lipids, and nucleic acids. In vitro experiments showed that EV uptake can lead to transfer of functional mRNA and altered cellular behavior. However, similar in vivo experiments remain challenging because cells that take up EVs cannot be discriminated from non-EV-receiving cells. Here, we used the Cre-LoxP system to directly identify tumor cells that take up EVs in vivo. We show that EVs released by malignant tumor cells are taken up by less malignant tumor cells located within the same and within distant tumors and that these EVs carry mRNAs involved in migration and metastasis. By intravital imaging, we show that the less malignant tumor cells that take up EVs display enhanced migratory behavior and metastatic capacity. We postulate that tumor cells locally and systemically share molecules carried by EVs in vivo and that this affects cellular behavior.


Assuntos
Células Neoplásicas Circulantes/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Integrases/metabolismo , Camundongos , Metástase Neoplásica , Vesículas Transportadoras/metabolismo
3.
Sci Transl Med ; 4(158): 158ra145, 2012 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-23115354

RESUMO

Cell dynamics in subcutaneous and breast tumors can be studied through conventional imaging windows with intravital microscopy. By contrast, visualization of the formation of metastasis has been hampered by the lack of long-term imaging windows for metastasis-prone organs, such as the liver. We developed an abdominal imaging window (AIW) to visualize distinct biological processes in the spleen, kidney, small intestine, pancreas, and liver. The AIW can be used to visualize processes for up to 1 month, as we demonstrate with islet cell transplantation. Furthermore, we have used the AIW to image the single steps of metastasis formation in the liver over the course of 14 days. We observed that single extravasated tumor cells proliferated to form "pre-micrometastases," in which cells lacked contact with neighboring tumor cells and were active and motile within the confined region of the growing clone. The clones then condensed into micrometastases where cell migration was strongly diminished but proliferation continued. Moreover, the metastatic load was reduced by suppressing tumor cell migration in the pre-micrometastases. We suggest that tumor cell migration within pre-micrometastases is a contributing step that can be targeted therapeutically during liver metastasis formation.


Assuntos
Neoplasias Hepáticas/diagnóstico , Microscopia de Vídeo/métodos , Micrometástase de Neoplasia/diagnóstico , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos BALB C
4.
Cancer Cell ; 22(3): 389-403, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-22975380

RESUMO

Cell polarization is crucial during development and tissue homeostasis and is regulated by conserved proteins of the Scribble, Crumbs, and Par complexes. In mouse skin tumorigenesis, Par3 deficiency results in reduced papilloma formation and growth. Par3 mediates its tumor-promoting activity through regulation of growth and survival, since Par3 deletion increases apoptosis and reduces growth in vivo and in vitro. In contrast, Par3-deficient mice are predisposed to formation of keratoacanthomas, cutaneous tumors thought to originate from different cellular origin and frequently observed in humans. Par3 expression is reduced in both mouse and human keratoacanthomas, indicating tumor-suppressive properties of Par3. Our results identify a dual function of Par3 in skin cancer, with both pro-oncogenic and tumor-suppressive activity depending on the tumor type.


Assuntos
Moléculas de Adesão Celular/metabolismo , Transformação Celular Neoplásica , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Moléculas de Adesão Celular/deficiência , Moléculas de Adesão Celular/genética , Proteínas de Ciclo Celular , Polaridade Celular , Proliferação de Células , Células Cultivadas , Queratinócitos/metabolismo , Ceratoacantoma/genética , Ceratoacantoma/metabolismo , Ceratoacantoma/patologia , Camundongos , Camundongos Transgênicos , Proteína Quinase C/metabolismo , Pele/metabolismo , Neoplasias Cutâneas/genética
5.
Nature ; 452(7190): 1007-11, 2008 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-18408711

RESUMO

From worm to man, many odorant signals are perceived by the binding of volatile ligands to odorant receptors that belong to the G-protein-coupled receptor (GPCR) family. They couple to heterotrimeric G-proteins, most of which induce cAMP production. This second messenger then activates cyclic-nucleotide-gated ion channels to depolarize the olfactory receptor neuron, thus providing a signal for further neuronal processing. Recent findings, however, have challenged this concept of odorant signal transduction in insects, because their odorant receptors, which lack any sequence similarity to other GPCRs, are composed of conventional odorant receptors (for example, Or22a), dimerized with a ubiquitously expressed chaperone protein, such as Or83b in Drosophila. Or83b has a structure akin to GPCRs, but has an inverted orientation in the plasma membrane. However, G proteins are expressed in insect olfactory receptor neurons, and olfactory perception is modified by mutations affecting the cAMP transduction pathway. Here we show that application of odorants to mammalian cells co-expressing Or22a and Or83b results in non-selective cation currents activated by means of an ionotropic and a metabotropic pathway, and a subsequent increase in the intracellular Ca(2+) concentration. Expression of Or83b alone leads to functional ion channels not directly responding to odorants, but being directly activated by intracellular cAMP or cGMP. Insect odorant receptors thus form ligand-gated channels as well as complexes of odorant-sensing units and cyclic-nucleotide-activated non-selective cation channels. Thereby, they provide rapid and transient as well as sensitive and prolonged odorant signalling.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Ativação do Canal Iônico/efeitos dos fármacos , Nucleotídeos Cíclicos/farmacologia , Receptores Odorantes/metabolismo , Animais , Butiratos/farmacologia , Cálcio/metabolismo , Linhagem Celular , AMP Cíclico/metabolismo , AMP Cíclico/farmacologia , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Condutividade Elétrica , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Humanos , Ligantes , Nucleotídeos Cíclicos/metabolismo , Odorantes/análise , Técnicas de Patch-Clamp , Receptores Odorantes/química , Receptores Odorantes/genética , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA