Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Cell Stem Cell ; 31(5): 676-693.e10, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38626772

RESUMO

Frontotemporal dementia (FTD) is an incurable group of early-onset dementias that can be caused by the deposition of hyperphosphorylated tau in patient brains. However, the mechanisms leading to neurodegeneration remain largely unknown. Here, we combined single-cell analyses of FTD patient brains with a stem cell culture and transplantation model of FTD. We identified disease phenotypes in FTD neurons carrying the MAPT-N279K mutation, which were related to oxidative stress, oxidative phosphorylation, and neuroinflammation with an upregulation of the inflammation-associated protein osteopontin (OPN). Human FTD neurons survived less and elicited an increased microglial response after transplantation into the mouse forebrain, which we further characterized by single nucleus RNA sequencing of microdissected grafts. Notably, downregulation of OPN in engrafted FTD neurons resulted in improved engraftment and reduced microglial infiltration, indicating an immune-modulatory role of OPN in patient neurons, which may represent a potential therapeutic target in FTD.


Assuntos
Demência Frontotemporal , Neurônios , Osteopontina , Proteínas tau , Osteopontina/metabolismo , Osteopontina/genética , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Demência Frontotemporal/metabolismo , Humanos , Neurônios/metabolismo , Neurônios/patologia , Animais , Proteínas tau/metabolismo , Camundongos , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Microglia/metabolismo , Microglia/patologia , Mutação/genética
2.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37047520

RESUMO

Most cardiomyocytes (CMs) in the adult mammalian heart are either binucleated or contain a single polyploid nucleus. Recent studies have shown that polyploidy in CMs plays an important role as an adaptive response to physiological demands and environmental stress and correlates with poor cardiac regenerative ability after injury. However, knowledge about the functional properties of polyploid CMs is limited. In this study, we generated tetraploid pluripotent stem cells (PSCs) by fusion of murine embryonic stem cells (ESCs) and somatic cells isolated from bone marrow or spleen and performed a comparative analysis of the electrophysiological properties of tetraploid fusion-derived PSCs and diploid ESC-derived CMs. Fusion-derived PSCs exhibited characteristics of genuine ESCs and contained a near-tetraploid genome. Ploidy features and marker expression were also retained during the differentiation of fusion-derived cells. Fusion-derived PSCs gave rise to CMs, which were similar to their diploid ESC counterparts in terms of their expression of typical cardiospecific markers, sarcomeric organization, action potential parameters, response to pharmacologic stimulation with various drugs, and expression of functional ion channels. These results suggest that the state of ploidy does not significantly affect the structural and electrophysiological properties of murine PSC-derived CMs. These results extend our knowledge of the functional properties of polyploid CMs and contribute to a better understanding of their biological role in the adult heart.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Tetraploidia , Diploide , Células-Tronco Embrionárias , Diferenciação Celular/genética , Poliploidia , Mamíferos
3.
Mol Cells ; 46(4): 209-218, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36852435

RESUMO

In induced pluripotent stem cells (iPSCs), pluripotency is induced artificially by introducing the transcription factors Oct4, Sox2, Klf4, and c-Myc. When a transgene is introduced using a viral vector, the transgene may be integrated into the host genome and cause a mutation and cancer. No integration occurs when an episomal vector is used, but this method has a limitation in that remnants of the virus or vector remain in the cell, which limits the use of such iPSCs in therapeutic applications. Chemical reprogramming, which relies on treatment with small-molecule compounds to induce pluripotency, can overcome this problem. In this method, reprogramming is induced according to the gene expression pattern of extra-embryonic endoderm (XEN) cells, which are used as an intermediate stage in pluripotency induction. Therefore, iPSCs can be induced only from established XEN cells. We induced XEN cells using small molecules that modulate a signaling pathway and affect epigenetic modifications, and devised a culture method in which can be produced homogeneous XEN cells. At least 4 passages were required to establish morphologically homogeneous chemically induced XEN (CiXEN) cells, whose properties were similar to those of XEN cells, as revealed through cellular and molecular characterization. Chemically iPSCs derived from CiXEN cells showed characteristics similar to those of mouse embryonic stem cells. Our results show that the homogeneity of CiXEN cells is critical for the efficient induction of pluripotency by chemicals.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Camundongos , Reprogramação Celular , Células-Tronco Embrionárias Murinas , Epigênese Genética
4.
Proc Natl Acad Sci U S A ; 119(43): e2123476119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36251998

RESUMO

Microglia, the resident immune cells of the central nervous system (CNS), are derived from yolk-sac macrophages that populate the developing CNS during early embryonic development. Once established, the microglia population is self-maintained throughout life by local proliferation. As a scalable source of microglia-like cells (MGLs), we here present a forward programming protocol for their generation from human pluripotent stem cells (hPSCs). The transient overexpression of PU.1 and C/EBPß in hPSCs led to a homogenous population of mature microglia within 16 d. MGLs met microglia characteristics on a morphological, transcriptional, and functional level. MGLs facilitated the investigation of a human tauopathy model in cortical neuron-microglia cocultures, revealing a secondary dystrophic microglia phenotype. Single-cell RNA sequencing of microglia integrated into hPSC-derived cortical brain organoids demonstrated a shift of microglia signatures toward a more-developmental in vivo-like phenotype, inducing intercellular interactions promoting neurogenesis and arborization. Taken together, our microglia forward programming platform represents a tool for both reductionist studies in monocultures and complex coculture systems, including 3D brain organoids for the study of cellular interactions in healthy or diseased environments.


Assuntos
Microglia , Células-Tronco Pluripotentes , Diferenciação Celular/genética , Sistema Nervoso Central , Humanos , Macrófagos , Neurônios
5.
Cells ; 11(14)2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35883684

RESUMO

The transplantation of pluripotent stem cell (PSC)-derived liver organoids has been studied to solve the current donor shortage. However, the differentiation of unintended cell populations, difficulty in generating multi-lineage organoids, and tumorigenicity of PSC-derived organoids are challenges. However, direct conversion technology has allowed for the generation lineage-restricted induced stem cells from somatic cells bypassing the pluripotent state, thereby eliminating tumorigenic risks. Here, liver assembloids (iHEAs) were generated by integrating induced endothelial cells (iECs) into the liver organoids (iHLOs) generated with induced hepatic stem cells (iHepSCs). Liver assembloids showed enhanced functional maturity compared to iHLOs in vitro and improved therapeutic effects on cholestatic liver fibrosis animals in vivo. Mechanistically, FN1 expressed from iECs led to the upregulation of Itgα5/ß1 and Hnf4α in iHEAs and were correlated to the decreased expression of genes related to hepatic stellate cell activation such as Lox and Spp1 in the cholestatic liver fibrosis animals. In conclusion, our study demonstrates the possibility of generating transplantable iHEAs with directly converted cells, and our results evidence that integrating iECs allows iHEAs to have enhanced hepatic maturation compared to iHLOs.


Assuntos
Colestase , Células Endoteliais , Animais , Colestase/metabolismo , Cirrose Hepática/metabolismo , Organoides/metabolismo
6.
Stem Cell Res ; 62: 102826, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35667217

RESUMO

An induced pluripotent stem cell (hiPSC) line (MPIi008-A) was generated from fibroblasts of a 1-year-old male patient with Denys-Drash syndrome using lentiviral delivery of reprogramming factors OCT4, SOX2, KLF4 and c-MYC. The MPIi008-A iPSC line exhibited typical iPSC morphology and normal karyotype, expressed pluripotent stem cell markers, and showed developmental potential to differentiate into derivatives of all three germ layers in vivo. The hiPSC line harbours a heterozygous missense mutation (R394L) in exon 9 of the WT1 gene.


Assuntos
Síndrome de Denys-Drash , Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Diferenciação Celular , Síndrome de Denys-Drash/metabolismo , Fibroblastos/metabolismo , Heterozigoto , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lactente , Masculino , Mutação
7.
PLoS One ; 16(10): e0258427, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34653201

RESUMO

The DND microRNA-mediated repression inhibitor 1 (DND1) is a conserved RNA binding protein (RBP) that plays important roles in survival and fate maintenance of primordial germ cells (PGCs) and in the development of the male germline in zebrafish and mice. Dead end was shown to be expressed in human pluripotent stem cells (PSCs), PGCs and spermatogonia, but little is known about its specific role concerning pluripotency and human germline development. Here we use CRISPR/Cas mediated knockout and PGC-like cell (PGCLC) differentiation in human iPSCs to determine if DND1 (1) plays a role in maintaining pluripotency and (2) in specification of PGCLCs. We generated several clonal lines carrying biallelic loss of function mutations and analysed their differentiation potential towards PGCLCs and their gene expression on RNA and protein levels via RNA sequencing and mass spectrometry. The generated knockout iPSCs showed no differences in pluripotency gene expression, proliferation, or trilineage differentiation potential, but yielded reduced numbers of PGCLCs as compared with their parental iPSCs. RNAseq analysis of mutated PGCLCs revealed that the overall gene expression remains like non-mutated PGCLCs. However, reduced expression of genes associated with PGC differentiation and maintenance (e.g., NANOS3, PRDM1) was observed. Together, we show that DND1 iPSCs maintain their pluripotency but exhibit a reduced differentiation to PGCLCs. This versatile model will allow further analysis of the specific mechanisms by which DND1 influences PGC differentiation and maintenance.


Assuntos
Células Germinativas/metabolismo , Proteínas de Neoplasias/metabolismo , Sistemas CRISPR-Cas/genética , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Edição de Genes , Expressão Gênica , Células Germinativas/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas de Neoplasias/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Análise de Componente Principal , RNA/química , RNA/genética , RNA/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Análise de Célula Única
8.
Science ; 373(6562): 1537-1540, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34554778

RESUMO

Cardiomyocyte (CM) replacement is very slow in adult mammalian hearts, preventing regeneration of damaged myocardium. By contrast, fetal hearts display considerable regenerative potential owing to the presence of less mature CMs that still have the ability to proliferate. In this study, we demonstrate that heart-specific expression of Oct4, Sox2, Klf4, and c-Myc (OSKM) induces adult CMs to dedifferentiate, conferring regenerative capacity to adult hearts. Transient, CM-specific expression of OSKM extends the regenerative window for postnatal mouse hearts and induces a gene expression program in adult CMs that resembles that of fetal CMs. Extended expression of OSKM in CMs leads to cellular reprogramming and heart tumor formation. Short-term OSKM expression before and during myocardial infarction ameliorates myocardial damage and improves cardiac function, demonstrating that temporally controlled dedifferentiation and reprogramming enable cell cycle reentry of mammalian CMs and facilitate heart regeneration.


Assuntos
Reprogramação Celular , Coração/fisiologia , Miócitos Cardíacos/citologia , Regeneração , Actinas/genética , Actinas/metabolismo , Animais , Desdiferenciação Celular , Proliferação de Células , Doxiciclina/farmacologia , Expressão Gênica , Coração/embriologia , Neoplasias Cardíacas/patologia , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Mitose , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/terapia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo
9.
Blood ; 138(21): 2051-2065, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34370827

RESUMO

Hematopoietic stem and progenitor cell (HSPC) function in bone marrow (BM) is controlled by stroma-derived signals, but the identity and interplay of these signals remain incompletely understood. Here, we show that sympathetic nerve-derived dopamine directly controls HSPC behavior through D2 subfamily dopamine receptors. Blockade of dopamine synthesis, as well as pharmacological or genetic inactivation of D2 subfamily dopamine receptors, leads to reduced HSPC frequency, inhibition of proliferation, and low BM transplantation efficiency. Conversely, treatment with a D2-type receptor agonist increases BM regeneration and transplantation efficiency. Mechanistically, dopamine controls expression of the lymphocyte-specific protein tyrosine kinase (Lck), which, in turn, regulates MAPK-mediated signaling triggered by stem cell factor in HSPCs. Our work reveals critical functional roles of dopamine in HSPCs, which may open up new therapeutic options for improved BM transplantation and other conditions requiring the rapid expansion of HSPCs.


Assuntos
Dopamina/metabolismo , Células-Tronco Hematopoéticas/citologia , Receptores de Dopamina D2/metabolismo , Transdução de Sinais , Animais , Transplante de Medula Óssea , Proliferação de Células , Células Cultivadas , Células-Tronco Hematopoéticas/metabolismo , Camundongos
10.
Cell Stem Cell ; 28(7): 1291-1306.e10, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33848472

RESUMO

Generation of induced oligodendrocyte progenitor cells (iOPCs) from somatic fibroblasts is a strategy for cell-based therapy of myelin diseases. However, iOPC generation is inefficient, and the resulting iOPCs exhibit limited expansion and differentiation competence. Here we overcome these limitations by transducing an optimized transcription factor combination into a permissive donor phenotype, the pericyte. Pericyte-derived iOPCs (PC-iOPCs) are stably expandable and functionally myelinogenic with high differentiation competence. Unexpectedly, however, we found that PC-iOPCs are metastable so that they can produce myelination-competent oligodendrocytes or revert to their original identity in a context-dependent fashion. Phenotypic reversion of PC-iOPCs is tightly linked to memory of their original transcriptome and epigenome. Phenotypic reversion can be disconnected from this donor cell memory effect, and in vivo myelination can eventually be achieved by transplantation of O4+ pre-oligodendrocytes. Our data show that donor cell source and memory can contribute to the fate and stability of directly converted cells.


Assuntos
Bainha de Mielina , Oligodendroglia , Diferenciação Celular , Fibroblastos , Células-Tronco
11.
Nat Commun ; 11(1): 5499, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33127892

RESUMO

The epiblast, which provides the foundation of the future body, is actively reshaped during early embryogenesis, but the reshaping mechanisms are poorly understood. Here, using a 3D in vitro model of early epiblast development, we identify the canonical Wnt/ß-catenin pathway and its central downstream factor Esrrb as the key signalling cascade regulating the tissue-scale organization of the murine pluripotent lineage. Although in vivo the Wnt/ß-catenin/Esrrb circuit is dispensable for embryonic development before implantation, autocrine Wnt activity controls the morphogenesis and long-term maintenance of the epiblast when development is put on hold during diapause. During this phase, the progressive changes in the epiblast architecture and Wnt signalling response show that diapause is not a stasis but instead is a dynamic process with underlying mechanisms that can appear redundant during transient embryogenesis.


Assuntos
Diapausa/fisiologia , Células-Tronco Embrionárias/metabolismo , Receptores de Estrogênio/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Desenvolvimento Embrionário , Feminino , Camadas Germinativas/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfogênese , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Estrogênio/genética , beta Catenina/genética
12.
Stem Cell Res ; 48: 101993, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32950023

RESUMO

Here we have generated a human induced pluripotent stem cells (hiPSC) line (MPIi007-A) from skin fibroblasts of a 4-year-old male Metachromatic leukodystrophy (MLD) patient with a heterozygous 1178C > G (Thr393Ser) mutation in arylsulfatase A (ARSA) gene via retroviral expression of OCT4, SOX2, KLF4 and c-MYC. The MPIi007-A iPSC line displayed typical embryonic stem cell-like morphology, carried the ARSA gene mutation, expressed several pluripotent stem cell makers, retained normal karyotype (46, XY) and were capable of forming teratomas containing three germ layers. The MPIi007-A line can be used for the characterization of MLD-associated pathomechanisms and developing new therapeutic options.


Assuntos
Células-Tronco Pluripotentes Induzidas , Leucodistrofia Metacromática , Cerebrosídeo Sulfatase/genética , Pré-Escolar , Heterozigoto , Humanos , Fator 4 Semelhante a Kruppel , Leucodistrofia Metacromática/genética , Masculino , Mutação
13.
Elife ; 92020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32571478

RESUMO

Generation of autologous human motor neurons holds great promise for cell replacement therapy to treat spinal cord injury (SCI). Direct conversion allows generation of target cells from somatic cells, however, current protocols are not practicable for therapeutic purposes since converted cells are post-mitotic that are not scalable. Therefore, therapeutic effects of directly converted neurons have not been elucidated yet. Here, we show that human fibroblasts can be converted into induced motor neurons (iMNs) by sequentially inducing POU5F1(OCT4) and LHX3. Our strategy enables scalable production of pure iMNs because of the transient acquisition of proliferative iMN-intermediate cell stage which is distinct from neural progenitors. iMNs exhibited hallmarks of spinal motor neurons including transcriptional profiles, electrophysiological property, synaptic activity, and neuromuscular junction formation. Remarkably, transplantation of iMNs showed therapeutic effects, promoting locomotor functional recovery in rodent SCI model. Together, our advanced strategy will provide tools to acquire sufficient human iMNs that may represent a promising cell source for personalized cell therapy.


Assuntos
Fibroblastos/fisiologia , Regulação da Expressão Gênica , Proteínas com Homeodomínio LIM/genética , Locomoção/fisiologia , Neurônios Motores/transplante , Fator 3 de Transcrição de Octâmero/genética , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/terapia , Fatores de Transcrição/genética , Animais , Transplante de Células , Modelos Animais de Doenças , Feminino , Humanos , Proteínas com Homeodomínio LIM/metabolismo , Masculino , Camundongos , Camundongos Nus , Neurônios Motores/fisiologia , Fator 3 de Transcrição de Octâmero/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Fatores de Transcrição/metabolismo
14.
Sci Rep ; 10(1): 3614, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32109236

RESUMO

In humans, parthenogenesis and androgenesis occur naturally in mature cystic ovarian teratomas and androgenetic complete hydatidiform moles (CHM), respectively. Our previous study has reported human parthenogenetic induced pluripotent stem cells from ovarian teratoma-derived fibroblasts and screening of imprinted genes using genome-wide DNA methylation analysis. However, due to the lack of the counterparts of uniparental cells, identification of new imprinted differentially methylated regions has been limited. CHM are inherited from only the paternal genome. In this study, we generated human androgenetic induced pluripotent stem cells (AgHiPSCs) from primary androgenetic fibroblasts derived from CHM. To investigate the pluripotency state of AgHiPSCs, we analyzed their cellular and molecular characteristics. We tested the DNA methylation status of imprinted genes using bisulfite sequencing and demonstrated the androgenetic identity of AgHiPSCs. AgHiPSCs might be an attractive alternative source of human androgenetic embryonic stem cells. Furthermore, AgHiPSCs can be used in regenerative medicine, for analysis of genomic imprinting, to study imprinting-related development, and for disease modeling in humans.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Herança Paterna , Diferenciação Celular , Células Cultivadas , Metilação de DNA , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Impressão Genômica , Humanos , Mola Hidatiforme/genética , Mola Hidatiforme/metabolismo , Mola Hidatiforme/fisiopatologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Gravidez , Reprodução Assexuada
15.
EMBO J ; 39(1): e99165, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31571238

RESUMO

The success of Yamanaka factor reprogramming of somatic cells into induced pluripotent stem cells suggests that some factor(s) must remodel the nuclei from a condensed state to a relaxed state. How factor-dependent chromatin opening occurs remains unclear. Using FRAP and ATAC-seq, we found that Oct4 acts as a pioneer factor that loosens heterochromatin and facilitates the binding of Klf4 and the expression of epithelial genes in early reprogramming, leading to enhanced mesenchymal-to-epithelial transition. A mutation in the Oct4 linker, L80A, which shows impaired interaction with the BAF complex component Brg1, is inactive in heterochromatin loosening. Oct4-L80A also blocks the binding of Klf4 and retards MET. Finally, vitamin C or Gadd45a could rescue the reprogramming deficiency of Oct4-L80A by enhancing chromatin opening and Klf4 binding. These studies reveal a cooperation between Oct4 and Klf4 at the chromatin level that facilitates MET at the cellular level and shed light into the research of multiple factors in cell fate determination.


Assuntos
Reprogramação Celular , Células Epiteliais/metabolismo , Heterocromatina/metabolismo , Histonas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Fatores de Transcrição Kruppel-Like/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Animais , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Células Cultivadas , DNA Helicases/genética , DNA Helicases/metabolismo , Células Epiteliais/citologia , Transição Epitelial-Mesenquimal , Fibroblastos/citologia , Fibroblastos/metabolismo , Heterocromatina/genética , Histonas/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
PLoS One ; 14(8): e0221085, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31404112

RESUMO

Direct conversion from fibroblasts to generate hepatocyte like-cells (iHeps) bypassing the pluripotent state has been described in previous reports as an attractive method acquiring hepatocytes for cell-based therapy. The limited proliferation of iHeps, however, has hampered it uses in cell-based therapy. Since hepatic stem cells (HepSCs) possess self-renewal and bipotency with the capacity to differentiate into both hepatocytes and cholangiocytes, they have therapeutic potential for treating liver disease. Here, we investigated the therapeutic effects of induced HepSCs (iHepSCs) on a carbon tetrachloride (CCl4)-induced liver fibrosis model. We demonstrate that Oct4 and Hnf4a are sufficient to convert fibroblasts into expandable iHepSCs. Hepatocyte-like cells derived from iHepSCs (iHepSC-HEPs) exhibit the typical morphology of hepatocytes and hepatic functions, including glycogen storage, low-density lipoprotein (LDL) uptake, Indocyanine green (ICG) detoxification, drug metabolism, urea production, and albumin secretion. iHepSCs-derived cholangiocyte-like cells (iHepSC-CLCs) expressed cholangiocyte-specific markers and formed cysts and tubule-like structures with apical-basal polarity and secretory function in three-dimensional culture condition. Furthermore, iHepSCs showed anti-inflammatory and anti-fibrotic effects in CCl4-induced liver fibrosis. This study demonstrates that Oct4 and Hnf4α-induced HepSCs show typical hepatic and biliary functionality in vitro. It also presents the therapeutic effect of iHepSCs in liver fibrosis. Therefore, directly converting iHepSCs from somatic cells may facilitate the development of patient-specific cell-based therapy for chronic liver damage.


Assuntos
Intoxicação por Tetracloreto de Carbono , Fator 4 Nuclear de Hepatócito , Células-Tronco Pluripotentes Induzidas , Cirrose Hepática , Fígado , Lesão Pulmonar , Fator 3 de Transcrição de Octâmero , Transplante de Células-Tronco , Animais , Intoxicação por Tetracloreto de Carbono/genética , Intoxicação por Tetracloreto de Carbono/metabolismo , Intoxicação por Tetracloreto de Carbono/terapia , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Pluripotentes Induzidas/transplante , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/terapia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/genética , Lesão Pulmonar/metabolismo , Masculino , Camundongos , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo
17.
Angew Chem Int Ed Engl ; 58(46): 16617-16628, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31454140

RESUMO

The Hedgehog (Hh) signaling pathway is crucial for vertebrate embryonic development, tissue homeostasis and regeneration. Hh signaling is upregulated in basal cell carcinoma and medulloblastoma and Hh pathway inhibitors targeting the Smoothened (SMO) protein are in clinical use. However, the signaling cascade is incompletely understood and novel druggable proteins in the pathway are in high demand. We describe the discovery of the Hh-pathway modulator Pipinib by means of cell-based screening. Target identification and validation revealed that Pipinib selectively inhibits phosphatidylinositol 4-kinase IIIß (PI4KB) and suppresses GLI-mediated transcription and Hh target gene expression by impairing SMO translocation to the cilium. Therefore, inhibition of PI4KB and, consequently, reduction in phosphatidyl-4-phosphate levels may be considered an alternative approach to inhibit SMO function and thus, Hedgehog signaling.


Assuntos
Antineoplásicos/farmacologia , Proteínas Hedgehog/antagonistas & inibidores , Antígenos de Histocompatibilidade Menor/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tiofenos/farmacologia , Animais , Antineoplásicos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cílios/metabolismo , Expressão Gênica/efeitos dos fármacos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Camundongos , Antígenos de Histocompatibilidade Menor/genética , Morfolinas/farmacologia , Osteogênese/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Purinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Relação Estrutura-Atividade , Tiofenos/química
18.
Cell Stem Cell ; 23(2): 266-275.e6, 2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-29910149

RESUMO

Transcription factor (TF)-mediated reprogramming to pluripotency is a slow and inefficient process, because most pluripotency TFs fail to access relevant target sites in a refractory chromatin environment. It is still unclear how TFs actually orchestrate the opening of repressive chromatin during the long latency period of reprogramming. Here, we show that the orphan nuclear receptor Esrrb plays a pioneering role in recruiting the core pluripotency factors Oct4, Sox2, and Nanog to inactive enhancers in closed chromatin during the reprogramming of epiblast stem cells. Esrrb binds to silenced enhancers containing stable nucleosomes and hypermethylated DNA, which are inaccessible to the core factors. Esrrb binding is accompanied by local loss of DNA methylation, LIF-dependent engagement of p300, and nucleosome displacement, leading to the recruitment of core factors within approximately 2 days. These results suggest that TFs can drive rapid remodeling of the local chromatin structure, highlighting the remarkable plasticity of stable epigenetic information.


Assuntos
Reprogramação Celular , Elementos Facilitadores Genéticos/genética , Inativação Gênica , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Receptores de Estrogênio/metabolismo , Animais , Linhagem Celular , Cromatina/química , Cromatina/metabolismo , Células-Tronco Embrionárias/metabolismo , Feminino , Humanos , Masculino , Camundongos , Proteína Homeobox Nanog/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOXB1/metabolismo
19.
Stem Cells ; 36(8): 1216-1225, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29761584

RESUMO

Transient expression of the transcription factors OCT4, SOX2, KLF4, and C-MYC (OSKM) to induce partial reprogramming while avoiding the pluripotent state and teratoma formation has recently been discussed as a strategy for regenerating damaged tissues in vivo, whereby the impact of partial reprogramming on tissue repair remains to be elucidated. Here, we activated OSKM transcription factors in cutaneous wounds of OSKM-inducible transgenic mice and found that induction of OSKM factors in excisional wounds caused a diminished fibroblast transdifferentiation to myofibroblasts and wound contraction. Gene expression analyses showed downregulation of the profibrotic marker genes transforming growth factor beta 1, Collagen I, and vascular endothelial growth factor. Consequently, histological analyses demonstrated that OSKM induction in incisional wounds resulted in reduced scar tissue formation. These data provide proof of concept that OSKM-mediated partial reprogramming in situ can diminish fibrosis and improve tissue healing with less scar formation without the risk of tumor formation. This new insight into the effects of partial reprogramming in vivo may be relevant for developing reprogramming-based regenerative therapies for tissue injury and fibrotic diseases. Stem Cells 2018;36:1216-1225.


Assuntos
Reprogramação Celular , Cicatriz/patologia , Animais , Movimento Celular , Transdiferenciação Celular , Fibrose , Fator 4 Semelhante a Kruppel , Camundongos , Miofibroblastos/patologia , Reepitelização/efeitos dos fármacos , Fatores de Transcrição/metabolismo
20.
Stem Cell Reports ; 10(5): 1522-1536, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29606616

RESUMO

Disorders of the biliary epithelium, known as cholangiopathies, cause severe and irreversible liver diseases. The limited accessibility of bile duct precludes modeling of several cholangiocyte-mediated diseases. Therefore, novel approaches for obtaining functional cholangiocytes with high purity are needed. Previous work has shown that the combination of Hnf1ß and Foxa3 could directly convert mouse fibroblasts into bipotential hepatic stem cell-like cells, termed iHepSCs. However, the efficiency of converting fibroblasts into iHepSCs is low, and these iHepSCs exhibit extremely low differentiation potential into cholangiocytes, thus hindering the translation of iHepSCs to the clinic. Here, we describe that the expression of Hnf1α and Foxa3 dramatically facilitates the robust generation of iHepSCs. Notably, prolonged in vitro culture of Hnf1α- and Foxa3-derived iHepSCs induces a Notch signaling-mediated secondary conversion into cholangiocyte progenitor-like cells that display dramatically enhanced differentiation capacity into mature cholangiocytes. Our study provides a robust two-step approach for obtaining cholangiocyte progenitor-like cells using defined factors.


Assuntos
Sistema Biliar/citologia , Diferenciação Celular , Fibroblastos/citologia , Células-Tronco/citologia , Animais , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Fibroblastos/metabolismo , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Fator 3-gama Nuclear de Hepatócito/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo , Fígado/citologia , Camundongos Endogâmicos C57BL , Receptores Notch/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA