Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1187880, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377957

RESUMO

Due to rare but major adverse reactions to the AstraZeneca adenoviral ChAdOx1-S-nCoV-19 vaccine (ChAd), German health authorities recommended adults under 60 who received one dose of ChAd, to receive a second dose of the BioNTech mRNA BNT162b2 vaccine (BNT) as a booster. Studies in the general population suggest an enhanced efficacy of the heterologous (ChAd-BNT) compared to the homologous (BNT-BNT) vaccination regimen. However, an analysis of the efficacy in patient populations with a high risk of severe COVID-19 due to acquired immunodeficiency is still missing. We therefore compared both vaccination regimens in healthy controls, patients with gynecological tumors after chemotherapy, patients on dialysis and patients with rheumatic diseases concerning the humoral and cellular immune response. The humoral and cellular immune response differed substantially in healthy controls compared to patients with acquired immunodeficiency. Overall, the most significant differences between the two immunization regimens were found in neutralizing antibodies. These were always higher after a heterologous immunization. Healthy controls responded well to both vaccination regimens. However, the formation of neutralizing antibodies was more pronounced after a heterologous immunization. Dialysis patients, on the other hand, only developed an adequate humoral and particularly cellular immune response after a heterologous immunization. Tumor and rheumatic patients also - to a weaker extent compared to dialysis patients - benefited from a heterologous immunization. In conclusion, the heterologous COVID-19 vaccination regimens (ChAd-BNT) seem to have an advantage over the homologous vaccination regimens, especially in immunocompromised patients such as patients with end-stage kidney disease treated with hemodialysis.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto , Humanos , Vacinas contra COVID-19/efeitos adversos , Vacina BNT162 , COVID-19/prevenção & controle , Hospedeiro Imunocomprometido , Anticorpos Neutralizantes , Imunidade , RNA Mensageiro
2.
Front Immunol ; 13: 915001, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119050

RESUMO

It was shown that hypertension delays SARS CoV-2 viral clearance and exacerbates airway hyperinflammation in the respiratory tract. However, it is unknown whether hypertension determines the long-term cellular and humoral response to SARS Cov2. Health care workers (HCWs) after an outbreak of SARS Cov-2 infections were analyzed. Infected HCWs were not vaccinated before blood collection. 5-14 months (median 7 months) after detection of SARS CoV-2 infection, blood was taken to analyze humoral response (S1 IgG and SARS CoV-2 neutralizing antibodies) and cellular (T cell responses to SARS-CoV-2 with Lymphocyte Transformation Test). To identify clinical factors that determine the immune response, a multivariate regression analysis was done considering age, BMI, sex, diabetes, hypertension, smoking, COPD, asthma and time between PCR positivity and blood collection as confounding factors. Infected hypertensive HCWs more often needed to be hospitalized than non-hypertensive HCWs, but were less likely to develop anosmia and myalgia. The long-term humoral and cellular immune response was significantly strengthened in hypertensive versus normotensive infected HCWs. Multivariate regression analysis revealed that hypertension was independently associated with the humoral response to SARS CoV-2 infection. Multivariate regression analysis using same confounding factors for the humoral response showed a clear trend for an association with the cellular response to SARS CoV-2 infection as well. In conclusion, SARS CoV-2 infection strengthened immune response to SARS CoV-2 infection in hypertensive HCWs independent of other risk factors.


Assuntos
COVID-19 , Hipertensão , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , Imunoglobulina G , SARS-CoV-2
3.
Clin Chim Acta ; 532: 130-136, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35690083

RESUMO

Both infection with and vaccination against SARS-CoV-2 trigger a complex B-cell and T-cell response. Methods for the analysis of the B-cell response are now well established. However, reliable methods for measuring the T-cell response are less well established and their usefulness in clinical settings still needs to be proven. Here, we have developed and validated a T-cell proliferation assay based on 3H thymidine incorporation. The assay is using SARS-CoV-2 derived peptide pools that cover the spike (S), the nucleocapsid (N) and the membrane (M) protein for stimulation. We have compared this novel SARS-CoV-2 lymphocyte transformation test (SARS-CoV-2 LTT) to an established ELISA assay detecting Immunoglobulin G (IgG) antibodies to the S1 subunit of the SARS-CoV-2 spike protein. The study was carried out using blood samples from both vaccinated and infected health care workers as well as from a non-infected control group. Our novel SARS-CoV-2 LTT shows excellent discrimination of infected and/or vaccinated individuals versus unexposed controls, with the ROC analysis showing an area under the curve (AUC) of > 0.95. No false positives were recorded as all unexposed controls had a negative LTT result. When using peptide pools not only representing the S protein (found in all currently approved vaccines) but also the N and M proteins (not contained in the vast majority of vaccines), the novel SARS-CoV-2 LTT can also discriminate T-cell responses resulting from vaccination against those induced by infection.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , COVID-19/diagnóstico , Proliferação de Células , Humanos , Peptídeos , Glicoproteína da Espícula de Coronavírus , Linfócitos T , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA