Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 39(12)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36227729

RESUMO

RNA editing converts cytidines to uridines in plant organellar transcripts. Editing typically restores codons for conserved amino acids. During evolution, specific C-to-U editing sites can be lost from some plant lineages by genomic C-to-T mutations. By contrast, the emergence of novel editing sites is less well documented. Editing sites are recognized by pentatricopeptide repeat (PPR) proteins with high specificity. RNA recognition by PPR proteins is partially predictable, but prediction is often inadequate for PPRs involved in RNA editing. Here we have characterized evolution and recognition of a recently gained editing site. We demonstrate that changes in the RNA recognition motifs that are not explainable with the current PPR code allow an ancient PPR protein, QED1, to uniquely target the ndhB-291 site in Brassicaceae. When expressed in tobacco, the Arabidopsis QED1 edits 33 high-confident off-target sites in chloroplasts and mitochondria causing a spectrum of mutant phenotypes. By manipulating the relative expression levels of QED1 and ndhB-291, we show that the target specificity of the PPR protein depends on the RNA:protein ratio. Finally, our data suggest that the low expression levels of PPR proteins are necessary to ensure the specificity of editing site selection and prevent deleterious off-target editing.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Edição de RNA , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Cloroplastos/metabolismo , RNA , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plant Physiol ; 185(3): 1111-1130, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33793892

RESUMO

The pathway of photosystem II (PSII) assembly is well understood, and multiple auxiliary proteins supporting it have been identified, but little is known about rate-limiting steps controlling PSII biogenesis. In the cyanobacterium Synechocystis PCC6803 and the green alga Chlamydomonas reinhardtii, indications exist that the biosynthesis of the chloroplast-encoded D2 reaction center subunit (PsbD) limits PSII accumulation. To determine the importance of D2 synthesis for PSII accumulation in vascular plants and elucidate the contributions of transcriptional and translational regulation, we modified the 5'-untranslated region of psbD via chloroplast transformation in tobacco (Nicotiana tabacum). A drastic reduction in psbD mRNA abundance resulted in a strong decrease in PSII content, impaired photosynthetic electron transport, and retarded growth under autotrophic conditions. Overexpression of the psbD mRNA also increased transcript abundance of psbC (the CP43 inner antenna protein), which is co-transcribed with psbD. Because translation efficiency remained unaltered, translation output of pbsD and psbC increased with mRNA abundance. However, this did not result in increased PSII accumulation. The introduction of point mutations into the Shine-Dalgarno-like sequence or start codon of psbD decreased translation efficiency without causing pronounced effects on PSII accumulation and function. These data show that neither transcription nor translation of psbD and psbC are rate-limiting for PSII biogenesis in vascular plants and that PSII assembly and accumulation in tobacco are controlled by different mechanisms than in cyanobacteria or in C. reinhardtii.


Assuntos
Nicotiana/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , RNA Mensageiro/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Complexo de Proteína do Fotossistema II/genética , Biossíntese de Proteínas/genética , Biossíntese de Proteínas/fisiologia , Nicotiana/genética
3.
Plant Cell ; 33(5): 1682-1705, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33561268

RESUMO

Translational recoding, also known as ribosomal frameshifting, is a process that causes ribosome slippage along the messenger RNA, thereby changing the amino acid sequence of the synthesized protein. Whether the chloroplast employs recoding is unknown. I-iota, a plastome mutant of Oenothera (evening primrose), carries a single adenine insertion in an oligoA stretch [11A] of the atpB coding region (encoding the ß-subunit of the ATP synthase). The mutation is expected to cause synthesis of a truncated, nonfunctional protein. We report that a full-length AtpB protein is detectable in I-iota leaves, suggesting operation of a recoding mechanism. To characterize the phenomenon, we generated transplastomic tobacco lines in which the atpB reading frame was altered by insertions or deletions in the oligoA motif. We observed that insertion of two adenines was more efficiently corrected than insertion of a single adenine, or deletion of one or two adenines. We further show that homopolymeric composition of the oligoA stretch is essential for recoding, as an additional replacement of AAA lysine codon by AAG resulted in an albino phenotype. Our work provides evidence for the operation of translational recoding in chloroplasts. Recoding enables correction of frameshift mutations and can restore photoautotrophic growth in the presence of a mutation that otherwise would be lethal.


Assuntos
Cloroplastos/metabolismo , Mutação da Fase de Leitura/genética , Genes de Plantas , Nicotiana/genética , Oenothera/genética , Proteínas de Plantas/genética , Biossíntese de Proteínas/genética , Sequência de Aminoácidos , Sequência de Bases , Cloroplastos/ultraestrutura , DNA Complementar/genética , Escherichia coli/metabolismo , Genótipo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/genética , Peptídeos/química , Peptídeos/metabolismo , Fenótipo , Fotossíntese , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Reprodução
4.
J Exp Bot ; 72(7): 2544-2569, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33484250

RESUMO

Carotenoids are important isoprenoids produced in the plastids of photosynthetic organisms that play key roles in photoprotection and antioxidative processes. ß-Carotene is generated from lycopene by lycopene ß-cyclase (LCYB). Previously, we demonstrated that the introduction of the Daucus carota (carrot) DcLCYB1 gene into tobacco (cv. Xanthi) resulted in increased levels of abscisic acid (ABA) and especially gibberellins (GAs), resulting in increased plant yield. In order to understand this phenomenon prior to exporting this genetic strategy to crops, we generated tobacco (Nicotiana tabacum cv. Petit Havana) mutants that exhibited a wide range of LCYB expression. Transplastomic plants expressing DcLCYB1 at high levels showed a wild-type-like growth, even though their pigment content was increased and their leaf GA1 content was reduced. RNA interference (RNAi) NtLCYB lines showed different reductions in NtLCYB transcript abundance, correlating with reduced pigment content and plant variegation. Photosynthesis (leaf absorptance, Fv/Fm, and light-saturated capacity of linear electron transport) and plant growth were impaired. Remarkably, drastic changes in phytohormone content also occurred in the RNAi lines. However, external application of phytohormones was not sufficient to rescue these phenotypes, suggesting that altered photosynthetic efficiency might be another important factor explaining their reduced biomass. These results show that LCYB expression influences plant biomass by different mechanisms and suggests thresholds for LCYB expression levels that might be beneficial or detrimental for plant growth.


Assuntos
Liases Intramoleculares , Nicotiana , Carotenoides , Regulação da Expressão Gênica de Plantas , Liases Intramoleculares/genética , Liases Intramoleculares/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
5.
Plant J ; 103(6): 1967-1984, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32623777

RESUMO

Because carotenoids act as accessory pigments in photosynthesis, play a key photoprotective role and are of major nutritional importance, carotenogenesis has been a target for crop improvement. Although carotenoids are important precursors of phytohormones, previous genetic manipulations reported little if any effects on biomass production and plant development, but resulted in specific modifications in carotenoid content. Unexpectedly, the expression of the carrot lycopene ß-cyclase (DcLCYB1) in Nicotiana tabacum cv. Xanthi not only resulted in increased carotenoid accumulation, but also in altered plant architecture characterized by longer internodes, faster plant growth, early flowering and increased biomass. Here, we have challenged these transformants with a range of growth conditions to determine the robustness of their phenotype and analyze the underlying mechanisms. Transgenic DcLCYB1 lines showed increased transcript levels of key genes involved in carotenoid, chlorophyll, gibberellin (GA) and abscisic acid (ABA) biosynthesis, but also in photosynthesis-related genes. Accordingly, their carotenoid, chlorophyll, ABA and GA contents were increased. Hormone application and inhibitor experiments confirmed the key role of altered GA/ABA contents in the growth phenotype. Because the longer internodes reduce shading of mature leaves, induction of leaf senescence was delayed, and mature leaves maintained a high photosynthetic capacity. This increased total plant assimilation, as reflected in higher plant yields under both fully controlled constant and fluctuating light, and in non-controlled conditions. Furthermore, our data are a warning that engineering of isoprenoid metabolism can cause complex changes in phytohormone homeostasis and therefore plant development, which have not been sufficiently considered in previous studies.


Assuntos
Carotenoides/metabolismo , Genes de Plantas/fisiologia , Nicotiana/crescimento & desenvolvimento , Fotossíntese/genética , Ácido Abscísico/metabolismo , Daucus carota/genética , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Giberelinas/metabolismo , Redes e Vias Metabólicas/genética , Fotossíntese/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Nicotiana/anatomia & histologia , Nicotiana/metabolismo , Nicotiana/fisiologia , Regulação para Cima
6.
Plant Physiol ; 182(1): 424-435, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31636102

RESUMO

Acclimation to changing light intensities poses major challenges to plant metabolism and has been shown to involve regulatory adjustments in chloroplast gene expression. However, this regulation has not been examined at a plastid genome-wide level and for many genes, it is unknown whether their expression responds to altered light intensities. Here, we applied comparative ribosome profiling and transcriptomic experiments to analyze changes in chloroplast transcript accumulation and translation in leaves of tobacco (Nicotiana tabacum) seedlings after transfer from moderate light to physiological high light. Our time-course data revealed almost unaltered chloroplast transcript levels and only mild changes in ribosome occupancy during 2 d of high light exposure. Ribosome occupancy on the psbA mRNA (encoding the D1 reaction center protein of PSII) increased and that on the petG transcript decreased slightly after high light treatment. Transfer from moderate light to high light did not induce substantial alterations in ribosome pausing. Transfer experiments from low light to high light conditions resulted in strong PSII photoinhibition and revealed the distinct light-induced activation of psbA translation, which was further confirmed by reciprocal shift experiments. In low-light-to-high-light shift experiments, as well as reciprocal treatments, the expression of all other chloroplast genes remained virtually unaltered. Altogether, our data suggest that low light-acclimated plants upregulate the translation of a single chloroplast gene, psbA, during acclimation to high light. Our results indicate that psbA translation activation occurs already at moderate light intensities. Possible reasons for the otherwise mild effects of light intensity changes on gene expression in differentiated chloroplasts are discussed.


Assuntos
Cloroplastos/metabolismo , Luz , Nicotiana/metabolismo , Cloroplastos/efeitos da radiação , Complexo de Proteína do Fotossistema II/metabolismo , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Ribossomos/efeitos da radiação , Nicotiana/efeitos da radiação
7.
Plant Physiol ; 181(3): 891-900, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31519789

RESUMO

In chloroplasts and plant mitochondria, specific cytidines in mRNAs are posttranscriptionally converted to uridines by RNA editing. Editing sites are recognized by nucleus-encoded RNA-binding proteins of the pentatricopeptide repeat (PPR) family, which bind upstream of the editing site in a sequence-specific manner and direct the editing activity to the target position. Editing sites have been lost many times during evolution by C-to-T mutations. Loss of an editing site is thought to be accompanied by loss or degeneration of its cognate PPR protein. Consequently, foreign editing sites are usually not recognized when introduced into species lacking the site. Previously, the spinach (Spinacia oleracea) psbF-26 editing site was introduced into the tobacco (Nicotiana tabacum) plastid genome. Tobacco lacks the psbF-26 site and cannot edit it. Expression of the "unedited" PsbF protein resulted in impaired PSII function. In Arabidopsis (Arabidopsis thaliana), the PPR protein LPA66 is required for editing at psbF-26. Here, we show that introduction of the Arabidopsis LPA66 reconstitutes editing of the spinach psbF-26 site in tobacco and restores a wild-type-like phenotype. Our findings define the minimum requirements for establishing new RNA editing sites and suggest that the evolutionary dynamics of editing patterns is largely explained by coevolution of editing sites and PPR proteins.


Assuntos
Arabidopsis/genética , Cloroplastos/genética , Cloroplastos/metabolismo , Edição de RNA/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plastídeos/genética , Plastídeos/metabolismo
8.
Plant Physiol ; 180(1): 654-681, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30862726

RESUMO

Upon exposure to light, plant cells quickly acquire photosynthetic competence by converting pale etioplasts into green chloroplasts. This developmental transition involves the de novo biogenesis of the thylakoid system and requires reprogramming of metabolism and gene expression. Etioplast-to-chloroplast differentiation involves massive changes in plastid ultrastructure, but how these changes are connected to specific changes in physiology, metabolism, and expression of the plastid and nuclear genomes is poorly understood. Here, we describe a new experimental system in the dicotyledonous model plant tobacco (Nicotiana tabacum) that allows us to study the leaf deetiolation process at the systems level. We have determined the accumulation kinetics of photosynthetic complexes, pigments, lipids, and soluble metabolites and recorded the dynamic changes in plastid ultrastructure and in the nuclear and plastid transcriptomes. Our data describe the greening process at high temporal resolution, resolve distinct genetic and metabolic phases during deetiolation, and reveal numerous candidate genes that may be involved in light-induced chloroplast development and thylakoid biogenesis.


Assuntos
Nicotiana/citologia , Folhas de Planta/citologia , Folhas de Planta/fisiologia , Biologia de Sistemas/métodos , Aminoácidos/metabolismo , Metabolismo dos Carboidratos , Núcleo Celular/genética , Cloroplastos , Genomas de Plastídeos , Luz , Metabolismo dos Lipídeos , Microscopia Eletrônica de Transmissão , Fotossíntese , Plastídeos/genética , Nicotiana/fisiologia , Transcriptoma , Triglicerídeos/metabolismo
9.
Proc Natl Acad Sci U S A ; 116(12): 5665-5674, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30833407

RESUMO

In most eukaryotes, organellar genomes are transmitted preferentially by the mother, but molecular mechanisms and evolutionary forces underlying this fundamental biological principle are far from understood. It is believed that biparental inheritance promotes competition between the cytoplasmic organelles and allows the spread of so-called selfish cytoplasmic elements. Those can be, for example, fast-replicating or aggressive chloroplasts (plastids) that are incompatible with the hybrid nuclear genome and therefore maladaptive. Here we show that the ability of plastids to compete against each other is a metabolic phenotype determined by extremely rapidly evolving genes in the plastid genome of the evening primrose Oenothera Repeats in the regulatory region of accD (the plastid-encoded subunit of the acetyl-CoA carboxylase, which catalyzes the first and rate-limiting step of lipid biosynthesis), as well as in ycf2 (a giant reading frame of still unknown function), are responsible for the differences in competitive behavior of plastid genotypes. Polymorphisms in these genes influence lipid synthesis and most likely profiles of the plastid envelope membrane. These in turn determine plastid division and/or turnover rates and hence competitiveness. This work uncovers cytoplasmic drive loci controlling the outcome of biparental chloroplast transmission. Here, they define the mode of chloroplast inheritance, as plastid competitiveness can result in uniparental inheritance (through elimination of the "weak" plastid) or biparental inheritance (when two similarly "strong" plastids are transmitted).


Assuntos
Cloroplastos/genética , Cloroplastos/fisiologia , Oenothera biennis/metabolismo , Acetil-CoA Carboxilase/genética , Evolução Biológica , Núcleo Celular/genética , Citoplasma/genética , Eucariotos/genética , Genoma , Genomas de Plastídeos/genética , Genótipo , Lipídeos/biossíntese , Oenothera biennis/fisiologia , Proteínas de Plantas/genética , Plastídeos/genética
10.
Front Plant Sci ; 9: 1423, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30374361

RESUMO

Sulfite reductase (SIR) is a key enzyme in higher plants in the assimilatory sulfate reduction pathway. SIR, being exclusively localized in plastids, catalyzes the reduction of sulfite (SO3 2-) to sulfide (S2-) and is essential for plant life. We characterized transgenic plants leading to co-suppression of the SIR gene in tobacco (Nicotiana tabacum cv. Samsun NN). Co-suppression resulted in reduced but not completely extinguished expression of SIR and in a reduction of SIR activity to about 20-50% of the activity in control plants. The reduction of SIR activity caused chlorotic and necrotic phenotypes in tobacco leaves, but with varying phenotype strength even among clones and increasing from young to old leaves. In transgenic plants compared to control plants, metabolite levels upstream of SIR accumulated, such as sulfite, sulfate and thiosulfate. The levels of downstream metabolites were reduced, such as cysteine, glutathione (GSH) and methionine. This metabolic signature resembles a sulfate deprivation phenotype as corroborated by the fact that O-acetylserine (OAS) accumulated. Further, chlorophyll contents, photosynthetic electron transport, and the contents of carbohydrates such as starch, sucrose, fructose, and glucose were reduced. Amino acid compositions were altered in a complex manner due to the reduction of contents of cysteine, and to some extent methionine. Interestingly, sulfide levels remained constant indicating that sulfide homeostasis is crucial for plant performance and survival. Additionally, this allows concluding that sulfide does not act as a signal in this context to control sulfate uptake and assimilation. The accumulation of upstream compounds hints at detoxification mechanisms and, additionally, a control exerted by the downstream metabolites on the sulfate uptake and assimilation system. Co-suppression lines showed increased sensitivity to additionally imposed stresses probably due to the accumulation of reactive compounds because of insufficient detoxification in combination with reduced GSH levels.

11.
J Exp Bot ; 68(5): 1137-1155, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28180288

RESUMO

PsaI is the only subunit of PSI whose precise physiological function has not yet been elucidated in higher plants. While PsaI is involved in PSI trimerization in cyanobacteria, trimerization was lost during the evolution of the eukaryotic PSI, and the entire PsaI side of PSI underwent major structural remodelling to allow for binding of light harvesting complex II antenna proteins during state transitions. Here, we have generated a tobacco (Nicotiana tabacum) knockout mutant of the plastid-encoded psaI gene. We show that PsaI is not required for the redox reactions of PSI. Neither plastocyanin oxidation nor the processes at the PSI acceptor side are impaired in the mutant, and both linear and cyclic electron flux rates are unaltered. The PSI antenna cross section is unaffected, state transitions function normally, and binding of other PSI subunits to the reaction centre is not compromised. Under a wide range of growth conditions, the mutants are phenotypically and physiologically indistinguishable from wild-type tobacco. However, in response to high-light and chilling stress, and especially during leaf senescence, PSI content is reduced in the mutants, indicating that the I-subunit plays a role in stabilizing PSI complexes.


Assuntos
Nicotiana/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Oxirredução , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Proteínas de Plantas/metabolismo , Plastídeos/metabolismo , Plastocianina/metabolismo , Nicotiana/metabolismo
12.
PLoS One ; 10(4): e0122616, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25915422

RESUMO

Thylakoid membranes contain the redox active complexes catalyzing the light-dependent reactions of photosynthesis in cyanobacteria, algae and plants. Crude thylakoid membranes or purified photosystems from different organisms have previously been utilized for generation of electrical power and/or fuels. Here we investigate the electron transferability from thylakoid preparations from plants or the cyanobacterium Synechocystis. We show that upon illumination, crude Synechocystis thylakoids can reduce cytochrome c. In addition, this crude preparation can transfer electrons to a graphite electrode, producing an unmediated photocurrent of 15 µA/cm2. Photocurrent could be obtained in the presence of the PSII inhibitor DCMU, indicating that the source of electrons is QA, the primary Photosystem II acceptor. In contrast, thylakoids purified from plants could not reduce cyt c, nor produced a photocurrent in the photocell in the presence of DCMU. The production of significant photocurrent (100 µA/cm2) from plant thylakoids required the addition of the soluble electron mediator DCBQ. Furthermore, we demonstrate that use of crude thylakoids from the D1-K238E mutant in Synechocystis resulted in improved electron transferability, increasing the direct photocurrent to 35 µA/cm2. Applying the analogous mutation to tobacco plants did not achieve an equivalent effect. While electron abstraction from crude thylakoids of cyanobacteria or plants is feasible, we conclude that the site of the abstraction of the electrons from the thylakoids, the architecture of the thylakoid preparations influence the site of the electron abstraction, as well as the transfer pathway to the electrode. This dictates the use of different strategies for production of sustainable electrical current from photosynthetic thylakoid membranes of cyanobacteria or higher plants.


Assuntos
Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Synechocystis/fisiologia , Tilacoides/fisiologia , Eletrodos , Transporte de Elétrons/fisiologia , Elétrons , Luz , Luz Solar , Synechocystis/metabolismo , Tilacoides/metabolismo
13.
J Exp Bot ; 66(9): 2373-400, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25540437

RESUMO

During plant development and in response to fluctuating environmental conditions, large changes in leaf assimilation capacity and in the metabolic consumption of ATP and NADPH produced by the photosynthetic apparatus can occur. To minimize cytotoxic side reactions, such as the production of reactive oxygen species, photosynthetic electron transport needs to be adjusted to the metabolic demand. The cytochrome b6f complex and chloroplast ATP synthase form the predominant sites of photosynthetic flux control. Accordingly, both respond strongly to changing environmental conditions and metabolic states. Usually, their contents are strictly co-regulated. Thereby, the capacity for proton influx into the lumen, which is controlled by electron flux through the cytochrome b6f complex, is balanced with proton efflux through ATP synthase, which drives ATP synthesis. We discuss the environmental, systemic, and metabolic signals triggering the stoichiometry adjustments of ATP synthase and the cytochrome b6f complex. The contribution of transcriptional and post-transcriptional regulation of subunit synthesis, and the importance of auxiliary proteins required for complex assembly in achieving the stoichiometry adjustments is described. Finally, current knowledge on the stability and turnover of both complexes is summarized.


Assuntos
ATPases de Cloroplastos Translocadoras de Prótons/fisiologia , Complexo Citocromos b6f/fisiologia , Fotossíntese/fisiologia , Aclimatação , Trifosfato de Adenosina/metabolismo , ATPases de Cloroplastos Translocadoras de Prótons/metabolismo , Complexo Citocromos b6f/metabolismo , Transporte de Elétrons , Meio Ambiente , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo
14.
Plant Physiol ; 165(4): 1632-1646, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24963068

RESUMO

The biogenesis of the cytochrome b6f complex in tobacco (Nicotiana tabacum) seems to be restricted to young leaves, suggesting a high lifetime of the complex. To directly determine its lifetime, we employed an ethanol-inducible RNA interference (RNAi) approach targeted against the essential nuclear-encoded Rieske protein (PetC) and the small M subunit (PetM), whose function in higher plants is unknown. Young expanding leaves of both PetM and PetC RNAi transformants bleached rapidly and developed necroses, while mature leaves, whose photosynthetic apparatus was fully assembled before RNAi induction, stayed green. In line with these phenotypes, cytochrome b6f complex accumulation and linear electron transport capacity were strongly repressed in young leaves of both RNAi transformants, showing that the M subunit is as essential for cytochrome b6f complex accumulation as the Rieske protein. In mature leaves, all photosynthetic parameters were indistinguishable from the wild type even after 14 d of induction. As RNAi repression of PetM and PetC was highly efficient in both young and mature leaves, these data indicate a lifetime of the cytochrome b6f complex of at least 1 week. The switch-off of cytochrome b6f complex biogenesis in mature leaves may represent part of the first dedicated step of the leaf senescence program.

15.
Plant Physiol ; 160(4): 1923-39, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23085838

RESUMO

Low Chlorophyll Accumulation A (LCAA) antisense plants were obtained from a screen for genes whose partial down-regulation results in a strong chlorophyll deficiency in tobacco (Nicotiana tabacum). The LCAA mutants are affected in a plastid-localized protein of unknown function, which is conserved in cyanobacteria and all photosynthetic eukaryotes. They suffer from drastically reduced light-harvesting complex (LHC) contents, while the accumulation of all other photosynthetic complexes per leaf area is less affected. As the disturbed accumulation of LHC proteins could be either attributable to a defect in LHC biogenesis itself or to a bottleneck in chlorophyll biosynthesis, chlorophyll synthesis rates and chlorophyll synthesis intermediates were measured. LCAA antisense plants accumulate magnesium (Mg) protoporphyrin monomethylester and contain reduced protochlorophyllide levels and a reduced content of CHL27, a subunit of the Mg protoporphyrin monomethylester cyclase. Bimolecular fluorescence complementation assays confirm a direct interaction between LCAA and CHL27. 5-Aminolevulinic acid synthesis rates are increased and correlate with an increased content of glutamyl-transfer RNA reductase. We suggest that LCAA encodes an additional subunit of the Mg protoporphyrin monomethylester cyclase, is required for the stability of CHL27, and contributes to feedback-control of 5-aminolevulinic acid biosynthesis, the rate-limiting step of chlorophyll biosynthesis.


Assuntos
Ácido Aminolevulínico/metabolismo , Retroalimentação Fisiológica , Oxirredutases Intramoleculares/metabolismo , Nicotiana/enzimologia , Proteínas de Plantas/metabolismo , Protoporfirinas/metabolismo , Sequência de Aminoácidos , Clorofila/metabolismo , Clorofila A , Sequência Conservada , Evolução Molecular , Fluorescência , Regulação da Expressão Gênica de Plantas , Oxirredutases Intramoleculares/química , Complexos de Proteínas Captadores de Luz/metabolismo , Dados de Sequência Molecular , Oxirredução , Fenótipo , Fotossíntese/genética , Plastídeos/metabolismo , Transporte Proteico , RNA Antissenso/metabolismo , Alinhamento de Sequência , Tetrapirróis/metabolismo , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento
16.
BMC Plant Biol ; 12: 8, 2012 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-22248311

RESUMO

BACKGROUND: We have studied the impact of carbohydrate-starvation on the acclimation response to high light using Arabidopsis thaliana double mutants strongly impaired in the day- and night path of photoassimilate export from the chloroplast. A complete knock-out mutant of the triose phosphate/phosphate translocator (TPT; tpt-2 mutant) was crossed to mutants defective in (i) starch biosynthesis (adg1-1, pgm1 and pgi1-1; knock-outs of ADP-glucose pyrophosphorylase, plastidial phosphoglucomutase and phosphoglucose isomerase) or (ii) starch mobilization (sex1-3, knock-out of glucan water dikinase) as well as in (iii) maltose export from the chloroplast (mex1-2). RESULTS: All double mutants were viable and indistinguishable from the wild type when grown under low light conditions, but--except for sex1-3/tpt-2--developed a high chlorophyll fluorescence (HCF) phenotype and growth retardation when grown in high light. Immunoblots of thylakoid proteins, Blue-Native gel electrophoresis and chlorophyll fluorescence emission analyses at 77 Kelvin with the adg1-1/tpt-2 double mutant revealed that HCF was linked to a specific decrease in plastome-encoded core proteins of both photosystems (with the exception of the PSII component cytochrome b559), whereas nuclear-encoded antennae (LHCs) accumulated normally, but were predominantly not attached to their photosystems. Uncoupled antennae are the major cause for HCF of dark-adapted plants. Feeding of sucrose or glucose to high light-grown adg1-1/tpt-2 plants rescued the HCF- and growth phenotypes. Elevated sugar levels induce the expression of the glucose-6-phosphate/phosphate translocator2 (GPT2), which in principle could compensate for the deficiency in the TPT. A triple mutant with an additional defect in GPT2 (adg1-1/tpt-2/gpt2-1) exhibited an identical rescue of the HCF- and growth phenotype in response to sugar feeding as the adg1-1/tpt-2 double mutant, indicating that this rescue is independent from the sugar-triggered induction of GPT2. CONCLUSIONS: We propose that cytosolic carbohydrate availability modulates acclimation to high light in A. thaliana. It is conceivable that the strong relationship between the chloroplast and nucleus with respect to a co-ordinated expression of photosynthesis genes is modified in carbohydrate-starved plants. Hence carbohydrates may be considered as a novel component involved in chloroplast-to-nucleus retrograde signaling, an aspect that will be addressed in future studies.


Assuntos
Aclimatação , Arabidopsis/metabolismo , Metabolismo dos Carboidratos , Luz , Folhas de Planta/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Cruzamentos Genéticos , Citosol/metabolismo , Transporte de Elétrons , Fluorescência , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Genes de Plantas , Glucose-1-Fosfato Adenililtransferase/genética , Glucose-1-Fosfato Adenililtransferase/metabolismo , Glucose-6-Fosfato Isomerase/genética , Glucose-6-Fosfato Isomerase/metabolismo , Microscopia Eletrônica de Transmissão , Fenótipo , Fosfoglucomutase/genética , Fosfoglucomutase/metabolismo , Fotossíntese , Folhas de Planta/efeitos da radiação , Amido/biossíntese
17.
Plant Cell ; 22(8): 2838-55, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20807881

RESUMO

The intricate assembly of photosystem I (PSI), a large multiprotein complex in the thylakoid membrane, depends on auxiliary protein factors. One of the essential assembly factors for PSI is encoded by ycf3 (hypothetical chloroplast reading frame number 3) in the chloroplast genome of algae and higher plants. To identify novel factors involved in PSI assembly, we constructed an epitope-tagged version of ycf3 from tobacco (Nicotiana tabacum) and introduced it into the tobacco chloroplast genome by genetic transformation. Immunoaffinity purification of Ycf3 complexes from the transplastomic plants identified a novel nucleus-encoded thylakoid protein, Y3IP1 (for Ycf3-interacting protein 1), that specifically interacts with the Ycf3 protein. Subsequent reverse genetics analysis of Y3IP1 function in tobacco and Arabidopsis thaliana revealed that knockdown of Y3IP1 leads to a specific deficiency in PSI but does not result in loss of Ycf3. Our data indicate that Y3IP1 represents a novel factor for PSI biogenesis that cooperates with the plastid genome-encoded Ycf3 in the assembly of stable PSI units in the thylakoid membrane.


Assuntos
Nicotiana/genética , Complexo de Proteína do Fotossistema I/metabolismo , Proteínas de Plantas/metabolismo , Tilacoides/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Sequência de Bases , Núcleo Celular/genética , DNA de Plantas/genética , Técnicas de Silenciamento de Genes , Genoma de Cloroplastos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Interferência de RNA , Alinhamento de Sequência , Nicotiana/metabolismo
18.
J Biol Chem ; 282(2): 976-85, 2007 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-17114182

RESUMO

The cytochrome-b6f complex, a key component of the photosynthetic electron transport chain, contains a number of very small protein subunits whose functions are not well defined. Here we have investigated the function of the 31-amino acid PetL subunit encoded in the chloroplast genome in all higher plants. Chloroplast-transformed petL knock-out tobacco plants display no obvious phenotype, suggesting that PetL is not essential for cytochrome b6f complex biogenesis and function (Fiebig, A., Stegemann, S., and Bock, R. (2004) Nucleic Acids Res. 32, 3615-3622). We show here that, whereas young mutant leaves accumulate comparable amounts of cytochrome b6f complex and have an identical assimilation capacity as wild type leaves, both cytochrome b6f complex contents and assimilation capacities of mature and old leaves are strongly reduced in the mutant, indicating that the cytochrome b6f complex is less stable than in the wild type. Reduced complex stability was also confirmed by in vitro treatments of isolated thylakoids with chaotropic reagents. Adaptive responses observed in the knockout mutants, such as delayed down-regulation of plastocyanin contents, indicate that plants can sense the restricted electron flux to photosystem I yet cannot compensate the reduced stability of the cytochrome b6f complex by adaptive up-regulation of complex synthesis. We propose that efficient cytochrome b6f complex biogenesis occurs only in young leaves and that the capacity for de novo synthesis of the complex is very low in mature and aging leaves. Gene expression analysis indicates that the ontogenetic down-regulation of cytochrome b6f complex biogenesis occurs at the post-transcriptional level.


Assuntos
Complexo Citocromos b6f/genética , Complexo Citocromos b6f/metabolismo , Nicotiana/fisiologia , Plastídeos/genética , Plastídeos/metabolismo , Adaptação Fisiológica , Regulação para Baixo/fisiologia , Transporte de Elétrons/fisiologia , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Fenótipo , Fotossíntese/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Nicotiana/crescimento & desenvolvimento , Transcrição Gênica/fisiologia
19.
J Biol Chem ; 281(52): 40461-72, 2006 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-17082184

RESUMO

Phylloquinone (vitamin K(1)) is synthesized in cyanobacteria and in chloroplasts of plants, where it serves as electron carrier of photosystem I. The last step of phylloquinone synthesis in cyanobacteria is the methylation of 2-phytyl-1,4-naphthoquinone by the menG gene product. Here, we report that the uncharacterized Arabidopsis gene At1g23360, which shows sequence similarity to menG, functionally complements the Synechocystis menG mutant. An Arabidopsis mutant, AtmenG, carrying a T-DNA insertion in the gene At1g23360 is devoid of phylloquinone, but contains an increased amount of 2-phytyl-1,4-naphthoquinone. Phylloquinone and 2-phytyl-1,4-naphthoquinone in thylakoid membranes of wild type and AtmenG, respectively, predominantly localize to photosystem I, whereas excess amounts of prenyl quinones are stored in plastoglobules. Photosystem I reaction centers are decreased in AtmenG plants under high light, as revealed by immunoblot and spectroscopic measurements. Anthocyanin accumulation and chalcone synthase (CHS1) transcription are affected during high light exposure, indicating that alterations in photosynthesis in AtmenG affect gene expression in the nucleus. Photosystem II quantum yield is decreased under high light. Therefore, the loss of phylloquinone methylation affects photosystem I stability or turnover, and the limitation in functional photosystem I complexes results in overreduction of photosystem II under high light.


Assuntos
Antocianinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Deleção de Genes , Metiltransferases/metabolismo , Naftoquinonas/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Prenilamina/análogos & derivados , Prenilamina/metabolismo , Vitamina K 1/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Luz , Metilação , Metiltransferases/deficiência , Metiltransferases/genética
20.
Plant Physiol ; 136(4): 4265-74, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15563617

RESUMO

We investigated adaptive responses of the photosynthetic electron transport to a decline in the carbon assimilation capacity. Leaves of different ages from wild-type tobacco (Nicotiana tabacum) L. var Samsun NN and young mature leaves of tobacco transformants with impaired photoassimilate export were used. The assimilation rate decreased from 280 in young mature wild-type leaves to below 50 mmol electrons mol chlorophyll(-1) s(-1) in older wild-type leaves or in transformants. The electron transport capacity, measured in thylakoids isolated from the different leaves, closely matched the leaf assimilation rate. The numbers of cytochrome (cyt)-bf complexes and plastocyanin (PC) decreased with the electron transport and assimilation capacity, while the numbers of photosystem I (PSI), photosystem II, and plastoquinone remained constant. The PC to PSI ratio decreased from five in leaves with high assimilation rates, to values below one in leaves with low assimilation rates, and the PC versus flux correlation was strictly proportional. Redox kinetics of cyt-f, PC, and P700 suggest that in leaves with low electron fluxes, PC is out of the equilibrium with P700 and cyt-f and the cyt-f reoxidation rate is restricted. It is concluded that the electron flux is sensitive to variations in the number of PC, relative to PSI and cyt-bf, and PC, in concert with cyt-bf, is a key component that adjusts to control the electron transport rate. PC dependent flux control may serve to adjust the electron transport rate under conditions where the carbon assimilation is diminished and thereby protects PSI against over-reduction and reactive oxygen production.


Assuntos
Carbono/metabolismo , Transporte de Elétrons/fisiologia , Nicotiana/metabolismo , Fotossíntese/fisiologia , Plastocianina/fisiologia , Clorofila/metabolismo , Clorofila A , Luz , Modelos Logísticos , Oxirredução , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Folhas de Planta/metabolismo , Tilacoides/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA