Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Annu Rev Genet ; 53: 1-18, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31794267

RESUMO

In Drosophila development, the axes of the egg and future embryo are established during oogenesis. To learn about the underlying genetic and molecular pathways that lead to axis formation, I conducted a large-scale genetic screen at the beginning of my independent career. This led to the eventual understanding that both anterior-posterior and dorsal-ventral pattern information is transmitted from the oocyte to the surrounding follicle cells and in turn from the follicle cells back to the oocyte. How I came to conduct this screen and what further insights were gained by studying the mutants isolated in the screen are the topics of this autobiographical article.


Assuntos
Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Genética/história , Óvulo/fisiologia , Animais , Padronização Corporal/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrião não Mamífero , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , História do Século XX , História do Século XXI , Masculino , Oócitos/fisiologia , Ovário/crescimento & desenvolvimento , Ovário/fisiologia , Receptores de Peptídeos de Invertebrados/genética , Receptores de Peptídeos de Invertebrados/metabolismo , Análise para Determinação do Sexo , Processos de Determinação Sexual , Estados Unidos
2.
G3 (Bethesda) ; 9(1): 47-60, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30385460

RESUMO

The Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) and epidermal growth factor receptor (EGFR) signaling pathways are conserved regulators of tissue patterning, morphogenesis, and other cell biological processes. During Drosophila oogenesis, these pathways determine the fates of epithelial follicle cells (FCs). JAK/STAT and EGFR together specify a population of cells called the posterior follicle cells (PFCs), which signal to the oocyte to establish the embryonic axes. In this study, whole genome expression analysis was performed to identify genes activated by JAK/STAT and/or EGFR. We observed that 317 genes were transcriptionally upregulated in egg chambers with ectopic JAK/STAT and EGFR activity in the FCs. The list was enriched for genes encoding extracellular matrix (ECM) components and ECM-associated proteins. We tested 69 candidates for a role in axis establishment using RNAi knockdown in the FCs. We report that the signaling protein Semaphorin 1b becomes enriched in the PFCs in response to JAK/STAT and EGFR. We also identified ADAM metallopeptidase with thrombospondin type 1 motif A (AdamTS-A) as a novel target of JAK/STAT in the FCs that regulates egg chamber shape. AdamTS-A mRNA becomes enriched at the anterior and posterior poles of the egg chamber at stages 6 to 7 and is regulated by JAK/STAT. Altering AdamTS-A expression in the poles or middle of the egg chamber produces rounder egg chambers. We propose that AdamTS-A regulates egg shape by remodeling the basement membrane.


Assuntos
Proteína ADAMTS1/genética , Proteínas de Drosophila/genética , Receptores ErbB/genética , Morfogênese/genética , Oogênese/genética , Receptores de Peptídeos de Invertebrados/genética , Animais , Polaridade Celular/genética , Drosophila melanogaster/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genoma de Inseto/genética , Janus Quinases/genética , Folículo Ovariano/crescimento & desenvolvimento , Folículo Ovariano/metabolismo , Óvulo/crescimento & desenvolvimento , Óvulo/metabolismo , Fatores de Transcrição STAT/genética , Transdução de Sinais/genética
3.
Dev Biol ; 442(1): 80-86, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30026122

RESUMO

Receptor tyrosine kinases (RTKs) control a wide range of developmental processes, from the first stages of embryogenesis to postnatal growth and neurocognitive development in the adult. A significant share of our knowledge about RTKs comes from genetic screens in model organisms, which provided numerous examples demonstrating how specific cell fates and morphologies are abolished when RTK activation is either abrogated or significantly reduced. Aberrant activation of such pathways has also been recognized in many forms of cancer. More recently, studies of human developmental syndromes established that excessive activation of RTKs and their downstream signaling effectors, most notably the Ras signaling pathway, can also lead to structural and functional defects. Given that both insufficient and excessive pathway activation can lead to abnormalities, mechanistic analysis of developmental RTK signaling must address quantitative questions about its regulation and function. Patterning events controlled by the RTK Torso in the early Drosophila embryo are well-suited for this purpose. This mini review summarizes current state of knowledge about Torso-dependent Ras activation and discusses its potential to serve as a quantitative model for studying the general principles of Ras signaling in development and disease.


Assuntos
Padronização Corporal/fisiologia , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/fisiologia , Animais , Padronização Corporal/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais/genética
4.
Cell Rep ; 18(8): 1831-1839, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28228250

RESUMO

The basement membrane (BM), a sheet of extracellular matrix lining the basal side of epithelia, is essential for epithelial cell function and integrity, yet the mechanisms that control the basal restriction of BM proteins are poorly understood. In epithelial cells, a specialized pathway is dedicated to restrict the deposition of BM proteins basally. Here, we report the identification of a factor in this pathway, a homolog of the mammalian guanine nucleotide exchange factor (GEF) Mss4, which we have named Stratum. The loss of Stratum leads to the missecretion of BM proteins at the apical side of the cells, forming aberrant layers in close contact with the plasma membrane. We found that Rab8GTPase acts downstream of Stratum in this process. Altogether, our results uncover the importance of this GEF/Rab complex in specifically coordinating the basal restriction of BM proteins, a critical process for the establishment and maintenance of epithelial cell polarity.


Assuntos
Membrana Basal/metabolismo , Membrana Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Células Epiteliais/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Membrana/metabolismo , Animais , Animais Geneticamente Modificados/metabolismo , Polaridade Celular/fisiologia , Humanos
5.
Nat Genet ; 49(3): 465-469, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28166211

RESUMO

Germline mutations in Ras pathway components are associated with a large class of human developmental abnormalities, known as RASopathies, that are characterized by a range of structural and functional phenotypes, including cardiac defects and neurocognitive delays. Although it is generally believed that RASopathies are caused by altered levels of pathway activation, the signaling changes in developing tissues remain largely unknown. We used assays with spatiotemporal resolution in Drosophila melanogaster (fruit fly) and Danio rerio (zebrafish) to quantify signaling changes caused by mutations in MAP2K1 (encoding MEK), a core component of the Ras pathway that is mutated in both RASopathies and cancers in humans. Surprisingly, we discovered that intrinsically active MEK variants can both increase and reduce the levels of pathway activation in vivo. The sign of the effect depends on cellular context, implying that some of the emerging phenotypes in RASopathies may be caused by increased, as well as attenuated, levels of Ras signaling.


Assuntos
Mutação em Linhagem Germinativa/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Transdução de Sinais/genética , Proteínas ras/genética , Animais , Drosophila melanogaster/genética , Cardiopatias/genética , Humanos , Neoplasias/genética , Transtornos Neurocognitivos/genética , Fenótipo , Peixe-Zebra/genética
6.
Proc Natl Acad Sci U S A ; 114(3): 510-515, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28049852

RESUMO

Germ-line mutations in components of the Ras/MAPK pathway result in developmental disorders called RASopathies, affecting about 1/1,000 human births. Rapid advances in genome sequencing make it possible to identify multiple disease-related mutations, but there is currently no systematic framework for translating this information into patient-specific predictions of disease progression. As a first step toward addressing this issue, we developed a quantitative, inexpensive, and rapid framework that relies on the early zebrafish embryo to assess mutational effects on a common scale. Using this assay, we assessed 16 mutations reported in MEK1, a MAPK kinase, and provide a robust ranking of these mutations. We find that mutations found in cancer are more severe than those found in both RASopathies and cancer, which, in turn, are generally more severe than those found only in RASopathies. Moreover, this rank is conserved in other zebrafish embryonic assays and Drosophila-specific embryonic and adult assays, suggesting that our ranking reflects the intrinsic property of the mutant molecule. Furthermore, this rank is predictive of the drug dose needed to correct the defects. This assay can be readily used to test the strengths of existing and newly found mutations in MEK1 and other pathway components, providing the first step in the development of rational guidelines for patient-specific diagnostics and treatment of RASopathies.


Assuntos
Deficiências do Desenvolvimento/genética , Proteínas ras/genética , Animais , Animais Geneticamente Modificados , Deficiências do Desenvolvimento/tratamento farmacológico , Deficiências do Desenvolvimento/metabolismo , Relação Dose-Resposta a Droga , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Humanos , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 1/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Mutação , Fenótipo , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
7.
Dev Biol ; 414(2): 193-206, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27130192

RESUMO

Cell migration plays crucial roles during development. An excellent model to study coordinated cell movements is provided by the migration of border cell clusters within a developing Drosophila egg chamber. In a mutagenesis screen, we isolated two alleles of the gene rickets (rk) encoding a G-protein-coupled receptor. The rk alleles result in border cell migration defects in a significant fraction of egg chambers. In rk mutants, border cells are properly specified and express the marker Slbo. Yet, analysis of both fixed as well as live samples revealed that some single border cells lag behind the main border cell cluster during migration, or, in other cases, the entire border cell cluster can remain tethered to the anterior epithelium as it migrates. These defects are observed significantly more often in mosaic border cell clusters, than in full mutant clusters. Reduction of the Rk ligand, Bursicon, in the border cell cluster also resulted in migration defects, strongly suggesting that Rk signaling is utilized for communication within the border cell cluster itself. The mutant border cell clusters show defects in localization of the adhesion protein E-cadherin, and apical polarity proteins during migration. E-cadherin mislocalization occurs in mosaic clusters, but not in full mutant clusters, correlating well with the rk border cell migration phenotype. Our work has identified a receptor with a previously unknown role in border cell migration that appears to regulate detachment and polarity of the border cell cluster coordinating processes within the cells of the cluster themselves.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/citologia , Oogênese/fisiologia , Ovário/citologia , Receptores Acoplados a Proteínas G/fisiologia , Alelos , Animais , Proteínas Estimuladoras de Ligação a CCAAT/fisiologia , Caderinas/fisiologia , Adesão Celular , Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Feminino , Hormônios de Invertebrado/fisiologia , Mosaicismo , Ovário/crescimento & desenvolvimento , Fenótipo , Interferência de RNA , Receptores Acoplados a Proteínas G/genética , Deleção de Sequência
8.
Curr Biol ; 25(13): 1784-90, 2015 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-26096970

RESUMO

Transient activation of the highly conserved extracellular-signal-regulated kinase (ERK) establishes precise patterns of cell fates in developing tissues. Quantitative parameters of these transients are essentially unknown, but a growing number of studies suggest that changes in these parameters can lead to a broad spectrum of developmental abnormalities. We provide a detailed quantitative picture of an ERK-dependent inductive signaling event in the early Drosophila embryo, an experimental system that offers unique opportunities for high-throughput studies of developmental signaling. Our analysis reveals a spatiotemporal pulse of ERK activation that is consistent with a model in which transient production of a short-ranged ligand feeds into a simple signal interpretation system. The pulse of ERK signaling acts as a switch in controlling the expression of the ERK target gene. The quantitative approach that led to this model, based on the integration of data from fixed embryos and live imaging, can be extended to other developmental systems patterned by transient inductive signals.


Assuntos
Comunicação Autócrina/fisiologia , Drosophila/fisiologia , Ativação Enzimática/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Modelos Biológicos , Animais , Embrião não Mamífero/fisiologia , Receptores ErbB/metabolismo , Processamento de Imagem Assistida por Computador , Hibridização In Situ , Cinética , Microscopia Confocal , Fatores de Tempo
9.
Proc Natl Acad Sci U S A ; 111(21): 7689-94, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24828534

RESUMO

The basement membrane (BM), a specialized sheet of the extracellular matrix contacting the basal side of epithelial tissues, plays an important role in the control of the polarized structure of epithelial cells. However, little is known about how BM proteins themselves achieve a polarized distribution. Here, we identify phosphatidylinositol 4,5-bisphosphate (PIP2) as a critical regulator of the polarized secretion of BM proteins. A decrease of PIP2 levels, in particular through mutations in Phosphatidylinositol synthase (Pis) and other members of the phosphoinositide pathway, leads to the aberrant accumulation of BM components at the apical side of the cell without primarily affecting the distribution of apical and basolateral polarity proteins. In addition, PIP2 controls the apical and lateral localization of Crag (Calmodulin-binding protein related to a Rab3 GDP/GTP exchange protein), a factor specifically required to prevent aberrant apical secretion of BM. We propose that PIP2, through the control of Crag's subcellular localization, restricts the secretion of BM proteins to the basal side.


Assuntos
Membrana Basal/metabolismo , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferase/metabolismo , Polaridade Celular/fisiologia , Transformação Celular Neoplásica/genética , Células Epiteliais/fisiologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Animais , Drosophila , Células Epiteliais/metabolismo , Feminino , Imunofluorescência , Ovário/metabolismo
10.
Mol Biol Cell ; 24(18): 2966-80, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23864715

RESUMO

Calcium-dependent cysteine proteases of the calpain family are modulatory proteases that cleave their substrates in a limited manner. Among their substrates, calpains target vertebrate and invertebrate IκB proteins. Because proteolysis by calpains potentially generates novel protein functions, it is important to understand how this affects NFκB activity. We investigate the action of Calpain A (CalpA) on the Drosophila melanogaster IκB homologue Cactus in vivo. CalpA alters the absolute amounts of Cactus protein. Our data indicate, however, that CalpA uses additional mechanisms to regulate NFκB function. We provide evidence that CalpA interacts physically with Cactus, recognizing a Cactus pool that is not bound to Dorsal, a fly NFκB/Rel homologue. We show that proteolytic cleavage by CalpA generates Cactus fragments lacking an N-terminal region required for Toll responsiveness. These fragments are generated in vivo and display properties distinct from those of full-length Cactus. We propose that CalpA targets free Cactus, which is incorporated into and modulates Toll-responsive complexes in the embryo and immune system.


Assuntos
Calpaína/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas I-kappa B/metabolismo , Fosfoproteínas/metabolismo , Proteólise , Receptores Toll-Like/metabolismo , Animais , Padronização Corporal , Linhagem Celular , Proteínas de Ligação a DNA/química , Proteínas de Drosophila/química , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/imunologia , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Corpo Adiposo/citologia , Corpo Adiposo/metabolismo , Sistema Imunitário/metabolismo , Larva/citologia , Larva/metabolismo , Modelos Biológicos , Mutação/genética , Inibidor de NF-kappaB alfa , Fosfoproteínas/química , Ligação Proteica
11.
J Biol Chem ; 287(46): 38992-9000, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22992731

RESUMO

Compelling evidence indicates that aggregation of the amyloid ß (Aß) peptide is a major underlying molecular culprit in Alzheimer disease. Specifically, soluble oligomers of the 42-residue peptide (Aß42) lead to a series of events that cause cellular dysfunction and neuronal death. Therefore, inhibiting Aß42 aggregation may be an effective strategy for the prevention and/or treatment of disease. We describe the implementation of a high throughput screen for inhibitors of Aß42 aggregation on a collection of 65,000 small molecules. Among several novel inhibitors isolated by the screen, compound D737 was most effective in inhibiting Aß42 aggregation and reducing Aß42-induced toxicity in cell culture. The protective activity of D737 was most significant in reducing the toxicity of high molecular weight oligomers of Aß42. The ability of D737 to prevent Aß42 aggregation protects against cellular dysfunction and reduces the production/accumulation of reactive oxygen species. Most importantly, treatment with D737 increases the life span and locomotive ability of flies in a Drosophila melanogaster model of Alzheimer disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/antagonistas & inibidores , Indóis/farmacologia , Fragmentos de Peptídeos/antagonistas & inibidores , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Animais , Animais Geneticamente Modificados , Benzotiazóis , Química Farmacêutica/métodos , Drosophila melanogaster , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Proteínas de Fluorescência Verde/metabolismo , Humanos , Indóis/química , Modelos Químicos , Fragmentos de Peptídeos/química , Peptídeos/química , Espécies Reativas de Oxigênio , Tiazóis/química
12.
J Cell Sci ; 125(Pt 2): 399-410, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22331351

RESUMO

The Notch signaling pathway plays important roles in a variety of developmental events. The context-dependent activities of positive and negative modulators dramatically increase the diversity of cellular responses to Notch signaling. In a screen for mutations affecting the Drosophila melanogaster follicular epithelium, we isolated a mutation in CoREST that disrupts the Notch-dependent mitotic-to-endocycle switch of follicle cells at stage 6 of oogenesis. We show that Drosophila CoREST positively regulates Notch signaling, acting downstream of the proteolytic cleavage of Notch but upstream of Hindsight activity; the Hindsight gene is a Notch target that coordinates responses in the follicle cells. We show that CoREST genetically interacts with components of the Notch repressor complex, Hairless, C-terminal Binding Protein and Groucho. In addition, we demonstrate that levels of H3K27me3 and H4K16 acetylation are dramatically increased in CoREST mutant follicle cells. Our data indicate that CoREST acts as a positive modulator of the Notch pathway in the follicular epithelium as well as in wing tissue, and suggests a previously unidentified role for CoREST in the regulation of Notch signaling. Given its high degree of conservation among species, CoREST probably also functions as a regulator of Notch-dependent cellular events in other organisms.


Assuntos
Proteínas Correpressoras/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/metabolismo , Receptores Notch/metabolismo , Animais , Proteínas Correpressoras/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Células Epiteliais/metabolismo , Feminino , Dosagem de Genes , Histonas/metabolismo , Mitose , Mutação , Proteínas Nucleares/metabolismo , Oócitos/citologia , Oogênese/genética , Fenótipo , Proteólise , Deleção de Sequência , Transdução de Sinais , Supressão Genética , Fatores de Transcrição/metabolismo , Asas de Animais/metabolismo
13.
Curr Opin Genet Dev ; 21(6): 719-25, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21862318

RESUMO

Spatial patterns of cell differentiation in developing tissues can be controlled by receptor tyrosine kinase (RTK) signaling gradients, which may form when locally secreted ligands activate uniformly expressed receptors. Graded activation of RTKs can span multiple cell diameters, giving rise to spatiotemporal patterns of signaling through the Extracellular Signal Regulated/Mitogen Activated Protein Kinase (ERK/MAPK), which connects receptor activation to multiple aspects of tissue morphogenesis. This general mechanism has been identified in numerous developmental contexts, from body axis specification in insects to patterning of the mammalian neocortex. We review recent quantitative studies of this mechanism in Drosophila oogenesis, an established genetic model of signaling through the Epidermal Growth Factor Receptor (EGFR), a highly conserved RTK.


Assuntos
Drosophila/embriologia , Drosophila/genética , Oogênese , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Diferenciação Celular , Drosophila/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Ligantes , Morfogênese , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais , Biologia de Sistemas
14.
Development ; 138(10): 1991-2001, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21490061

RESUMO

The Drosophila body axes are established in the oocyte during oogenesis. Oocyte polarization is initiated by Gurken, which signals from the germline through the epidermal growth factor receptor (Egfr) to the posterior follicle cells (PFCs). In response the PFCs generate an unidentified polarizing signal that regulates oocyte polarity. We have identified a loss-of-function mutation of flapwing, which encodes the catalytic subunit of protein phosphatase 1ß (PP1ß) that disrupts oocyte polarization. We show that PP1ß, by regulating myosin activity, controls the generation of the polarizing signal. Excessive myosin activity in the PFCs causes oocyte mispolarization and defective Notch signaling and endocytosis in the PFCs. The integrated activation of JAK/STAT and Egfr signaling results in the sensitivity of PFCs to defective Notch. Interestingly, our results also demonstrate a role of PP1ß in generating the polarizing signal independently of Notch, indicating a direct involvement of somatic myosin activity in axis formation.


Assuntos
Polaridade Celular/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Miosinas/metabolismo , Oócitos/citologia , Oócitos/metabolismo , Proteína Fosfatase 1/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Padronização Corporal/fisiologia , Drosophila/genética , Proteínas de Drosophila/genética , Feminino , Genes de Insetos , Dados de Sequência Molecular , Mutação , Oogênese/fisiologia , Proteína Fosfatase 1/genética , Receptores Notch/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais
15.
Development ; 138(9): 1697-703, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21429988

RESUMO

In a genetic screen we isolated mutations in CG10260, which encodes a phosphatidylinositol 4-kinase (PI4KIIIalpha), and found that PI4KIIIalpha is required for Hippo signaling in Drosophila ovarian follicle cells. PI4KIIIalpha mutations in the posterior follicle cells lead to oocyte polarization defects similar to those caused by mutations in the Hippo signaling pathway. PI4KIIIalpha mutations also cause misexpression of well-established Hippo signaling targets. The Merlin-Expanded-Kibra complex is required at the apical membrane for Hippo activity. In PI4KIIIalpha mutant follicle cells, Merlin fails to localize to the apical domain. Our analysis of PI4KIIIalpha mutants provides a new link in Hippo signal transduction from the cell membrane to its core kinase cascade.


Assuntos
Polaridade Celular/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Oócitos/fisiologia , Folículo Ovariano/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiologia , Feminino , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Antígenos de Histocompatibilidade Menor , Mutação/fisiologia , Neurofibromina 2/metabolismo , Oócitos/metabolismo , Oogênese/genética , Oogênese/fisiologia , Folículo Ovariano/citologia , Folículo Ovariano/metabolismo , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
16.
J Biol Chem ; 285(45): 34757-64, 2010 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-20810660

RESUMO

The Notch signaling pathway is important for cell fate decisions in embryonic development and adult life. Defining the functional importance of the Notch pathway in these contexts requires the elucidation of essential signal transduction components that have not been fully characterized. Here, we show that Rabconnectin-3B is required for the Notch pathway in mammalian cells. siRNA-mediated silencing of Rabconnectin-3B in mammalian cells attenuated Notch signaling and disrupted the activation and nuclear accumulation of the Notch target Hes1. Rabconnectin-3B knockdown also disrupted V-ATPase activity in mammalian cells, consistent with previous observations in Drosophila. Pharmacological inhibition of the V-ATPase complex significantly reduced Notch signaling in mammalian cells. Finally, Rabconnectin-3B knockdown phenocopied functional disruption of Notch signaling during osteoclast differentiation. Collectively, these findings define an important role for Rabconnectin-3 and V-ATPase activity in the Notch signaling pathway in mammalian cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Diferenciação Celular/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Osteoclastos/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular Tumoral , Drosophila melanogaster , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Proteínas do Tecido Nervoso/genética , RNA Interferente Pequeno/genética , Receptores Notch/genética , Fatores de Transcrição HES-1 , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
17.
Dev Cell ; 17(3): 387-402, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19758563

RESUMO

We have identified Rabconnectin-3alpha and beta (Rbcn-3A and B) as two regulators of Notch signaling in Drosophila. We found that, in addition to disrupting Notch signaling, mutations in Rbcn-3A and B cause defects in endocytic trafficking, where Notch and other membrane proteins accumulate in late endosomal compartments. We show that Notch is transported to the surface of mutant cells and that signaling is disrupted after the S2 cleavage. Interestingly, the yeast homolog of Rbcn-3A, Rav1, regulates the V-ATPase proton pump responsible for acidifying intracellular organelles. We found that, similarly, Rbcn-3A and B appear to regulate V-ATPase function. Moreover, we identified mutants in VhaAC39, a V-ATPase subunit, and showed that they phenocopy Rbcn-3A and Rbcn-3B mutants. Our results demonstrate that Rbcn-3 affects Notch signaling and trafficking through regulating V-ATPase function, which implies that the acidification of an intracellular compartment in the receiving cells is crucial for signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Drosophila/metabolismo , Endossomos/metabolismo , Receptores Notch/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Adenosina Trifosfatases/química , Animais , Proteínas de Drosophila/fisiologia , Drosophila melanogaster , Microscopia de Fluorescência/métodos , Modelos Biológicos , Modelos Genéticos , Mutação , Bombas de Próton/metabolismo , Transdução de Sinais , Vacúolos/metabolismo
18.
Curr Biol ; 19(14): R548-50, 2009 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-19640488

RESUMO

The formation of the dorso-ventral body pattern of Drosophila involves the restricted activation of a serine protease cascade in the extracellular space between the egg shell and the embryo. Now, the first molecular links have been identified between ventral gene expression during oogenesis and the activation of the protease cascade in the early embryo.


Assuntos
Padronização Corporal/fisiologia , Drosophila/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Serina Endopeptidases/metabolismo , Transdução de Sinais/fisiologia , Animais , Espaço Extracelular/metabolismo
19.
Dev Cell ; 14(3): 354-64, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18331716

RESUMO

The polarized architecture of epithelia relies on an interplay between the cytoskeleton, the trafficking machinery, and cell-cell and cell-matrix adhesion. Specifically, contact with the basement membrane (BM), an extracellular matrix underlying the basal side of epithelia, is important for cell polarity. However, little is known about how BM proteins themselves achieve a polarized distribution. In a genetic screen in the Drosophila follicular epithelium, we identified mutations in Crag, which encodes a conserved protein with domains implicated in membrane trafficking. Follicle cells mutant for Crag lose epithelial integrity and frequently become invasive. The loss of Crag leads to the anomalous accumulation of BM components on both sides of epithelial cells without directly affecting the distribution of apical or basolateral membrane proteins. This defect is not generally observed in mutants affecting epithelial integrity. We propose that Crag plays a unique role in organizing epithelial architecture by regulating the polarized secretion of BM proteins.


Assuntos
Proteínas de Ligação a Calmodulina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/citologia , Drosophila/metabolismo , Proteínas de Membrana/metabolismo , Animais , Membrana Basal/metabolismo , Proteínas de Ligação a Calmodulina/genética , Membrana Celular/metabolismo , Polaridade Celular/fisiologia , Drosophila/genética , Proteínas de Drosophila/genética , Endossomos/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Genes de Insetos , Mutação , Folículo Ovariano/citologia , Folículo Ovariano/metabolismo
20.
PLoS Genet ; 4(2): e31, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18266476

RESUMO

Heterozygous mutations in the tumor suppressor BRCA2 confer a high risk of breast and other cancers in humans. BRCA2 maintains genome stability in part through the regulation of Rad51-dependent homologous recombination. Much about its precise function in the DNA damage responses is, however, not yet known. We have made null mutations in the Drosophila homolog of BRCA2 and measured the levels of homologous recombination, non-homologous end-joining, and single-strand annealing in the pre-meiotic germline of Drosophila males. We show that repair by homologous recombination is dramatically decreased in Drosophila brca2 mutants. Instead, large flanking deletions are formed, and repair by the non-conservative single-strand annealing pathway predominates. We further show that during meiosis, Drosophila Brca2 has a dual role in the repair of meiotic double-stranded breaks and the efficient activation of the meiotic recombination checkpoint. The eggshell patterning defects that result from activation of the meiotic recombination checkpoint in other meiotic DNA repair mutants can be strongly suppressed by mutations in brca2. In addition, Brca2 co-immunoprecipitates with the checkpoint protein Rad9, suggesting a direct role for Brca2 in the transduction of the meiotic recombination checkpoint signal.


Assuntos
Reparo do DNA/genética , Drosophila/genética , Drosophila/metabolismo , Genes BRCA2 , Genes de Insetos , Animais , Animais Geneticamente Modificados , Sequência de Bases , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Drosophila/citologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Instabilidade Genômica , Humanos , Masculino , Meiose/genética , Mitose/genética , Modelos Genéticos , Mutação , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA