Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473785

RESUMO

Deep learning is a machine learning technique to model high-level abstractions in data by utilizing a graph composed of multiple processing layers that experience various linear and non-linear transformations. This technique has been shown to perform well for applications in drug discovery, utilizing structural features of small molecules to predict activity. Here, we report a large-scale study to predict the activity of small molecules across the human kinome-a major family of drug targets, particularly in anti-cancer agents. While small-molecule kinase inhibitors exhibit impressive clinical efficacy in several different diseases, resistance often arises through adaptive kinome reprogramming or subpopulation diversity. Polypharmacology and combination therapies offer potential therapeutic strategies for patients with resistant diseases. Their development would benefit from a more comprehensive and dense knowledge of small-molecule inhibition across the human kinome. Leveraging over 650,000 bioactivity annotations for more than 300,000 small molecules, we evaluated multiple machine learning methods to predict the small-molecule inhibition of 342 kinases across the human kinome. Our results demonstrated that multi-task deep neural networks outperformed classical single-task methods, offering the potential for conducting large-scale virtual screening, predicting activity profiles, and bridging the gaps in the available data.


Assuntos
Aprendizado Profundo , Humanos , Fosfotransferases , Descoberta de Drogas/métodos , Polifarmacologia , Aprendizado de Máquina
4.
Cell ; 186(16): 3476-3498.e35, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37541199

RESUMO

To improve the understanding of chemo-refractory high-grade serous ovarian cancers (HGSOCs), we characterized the proteogenomic landscape of 242 (refractory and sensitive) HGSOCs, representing one discovery and two validation cohorts across two biospecimen types (formalin-fixed paraffin-embedded and frozen). We identified a 64-protein signature that predicts with high specificity a subset of HGSOCs refractory to initial platinum-based therapy and is validated in two independent patient cohorts. We detected significant association between lack of Ch17 loss of heterozygosity (LOH) and chemo-refractoriness. Based on pathway protein expression, we identified 5 clusters of HGSOC, which validated across two independent patient cohorts and patient-derived xenograft (PDX) models. These clusters may represent different mechanisms of refractoriness and implicate putative therapeutic vulnerabilities.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Proteogenômica , Feminino , Humanos , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética
5.
PLoS Comput Biol ; 19(5): e1010263, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37235579

RESUMO

PNCK, or CAMK1b, is an understudied kinase of the calcium-calmodulin dependent kinase family which recently has been identified as a marker of cancer progression and survival in several large-scale multi-omics studies. The biology of PNCK and its relation to oncogenesis has also begun to be elucidated, with data suggesting various roles in DNA damage response, cell cycle control, apoptosis and HIF-1-alpha related pathways. To further explore PNCK as a clinical target, potent small-molecule molecular probes must be developed. Currently, there are no targeted small molecule inhibitors in pre-clinical or clinical studies for the CAMK family. Additionally, there exists no experimentally derived crystal structure for PNCK. We herein report a three-pronged chemical probe discovery campaign which utilized homology modeling, machine learning, virtual screening and molecular dynamics to identify small molecules with low-micromolar potency against PNCK activity from commercially available compound libraries. We report the discovery of a hit-series for the first targeted effort towards discovering PNCK inhibitors that will serve as the starting point for future medicinal chemistry efforts for hit-to-lead optimization of potent chemical probes.


Assuntos
Cálcio , Calmodulina , Inteligência Artificial
6.
Mol Ther Oncolytics ; 28: 307-320, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36938545

RESUMO

Notch activation complex kinase (NACK) is a component of the Notch transcriptional machinery critical for the Notch-mediated tumorigenesis. However, the mechanism through which NACK regulates Notch-mediated transcription is not well understood. Here, we demonstrate that NACK binds and hydrolyzes ATP and that only ATP-bound NACK can bind to the Notch ternary complex (NTC). Considering this, we sought to identify inhibitors of this ATP-dependent function and, using computational pipelines, discovered the first small-molecule inhibitor of NACK, Z271-0326, that directly blocks the activity of Notch-mediated transcription and shows potent antineoplastic activity in PDX mouse models. In conclusion, we have discovered the first inhibitor that holds promise for the efficacious treatment of Notch-driven cancers by blocking the Notch activity downstream of the NTC.

7.
iScience ; 25(12): 105621, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36465101

RESUMO

Renal cell carcinoma (RCC) is a fatal disease when advanced. While immunotherapy and tyrosine kinase inhibitor-based combinations are associated with improved survival, the majority of patients eventually succumb to the disease. Through a comprehensive pan-cancer, pan-kinome analysis of the Cancer Genome Atlas (TCGA), pregnancy-upregulated non-ubiquitous calcium-calmodulin-dependent kinase (PNCK), was identified as the most differentially overexpressed kinase in RCC. PNCK overexpression correlated with tumor stage, grade and poor survival. PNCK overexpression in RCC cells was associated with increased CREB phosphorylation, increased cell proliferation, and cell cycle progression. PNCK down-regulation, conversely, was associated with the opposite, in addition to increased apoptosis. Pathway analyses in PNCK knockdown cells showed significant down-regulation of hypoxia and angiogenesis pathways, as well as the modulation of the cell cycle, DNA damage, and apoptosis pathways. These results demonstrate for the first time the biological role of PNCK, an understudied kinase, in RCC and validate PNCK as a druggable target.

8.
Nat Commun ; 13(1): 4678, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945222

RESUMO

There are only a few platforms that integrate multiple omics data types, bioinformatics tools, and interfaces for integrative analyses and visualization that do not require programming skills. Here we present iLINCS ( http://ilincs.org ), an integrative web-based platform for analysis of omics data and signatures of cellular perturbations. The platform facilitates mining and re-analysis of the large collection of omics datasets (>34,000), pre-computed signatures (>200,000), and their connections, as well as the analysis of user-submitted omics signatures of diseases and cellular perturbations. iLINCS analysis workflows integrate vast omics data resources and a range of analytics and interactive visualization tools into a comprehensive platform for analysis of omics signatures. iLINCS user-friendly interfaces enable execution of sophisticated analyses of omics signatures, mechanism of action analysis, and signature-driven drug repositioning. We illustrate the utility of iLINCS with three use cases involving analysis of cancer proteogenomic signatures, COVID 19 transcriptomic signatures and mTOR signaling.


Assuntos
COVID-19 , Neoplasias , COVID-19/genética , Biologia Computacional , Humanos , Neoplasias/genética , Software , Transcriptoma , Fluxo de Trabalho
9.
J Med Chem ; 64(21): 15727-15746, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34676755

RESUMO

Increased protein synthesis is a requirement for malignant growth, and as a result, translation has become a pharmaceutical target for cancer. The initiation of cap-dependent translation is enzymatically driven by the eukaryotic initiation factor (eIF)4A, an ATP-powered DEAD-box RNA-helicase that unwinds the messenger RNA secondary structure upstream of the start codon, enabling translation of downstream genes. A screen for inhibitors of eIF4A ATPase activity produced an intriguing hit that, surprisingly, was not ATP-competitive. A medicinal chemistry campaign produced the novel eIF4A inhibitor 28, which decreased BJAB Burkitt lymphoma cell viability. Biochemical and cellular studies, molecular docking, and functional assays uncovered that 28 is an RNA-competitive, ATP-uncompetitive inhibitor that engages a novel pocket in the RNA groove of eIF4A and inhibits unwinding activity by interfering with proper RNA binding and suppressing ATP hydrolysis. Inhibition of eIF4A through this unique mechanism may offer new strategies for targeting this promising intersection point of many oncogenic pathways.


Assuntos
Descoberta de Drogas , Fator de Iniciação 4F em Eucariotos/antagonistas & inibidores , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Linfoma de Burkitt/patologia , Linhagem Celular Tumoral , Humanos , Conformação de Ácido Nucleico , RNA Mensageiro/química
10.
ACS Omega ; 6(38): 24432-24443, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34604625

RESUMO

eIF4A1 is an ATP-dependent RNA helicase whose overexpression and activity have been tightly linked to oncogenesis in a number of malignancies. An understanding of the complex kinetics and conformational changes of this translational enzyme is necessary to map out all targetable binding sites and develop novel, chemically tractable inhibitors. We herein present a comprehensive quantitative analysis of eIF4A1 conformational changes using protein-ligand docking, homology modeling, and extended molecular dynamics simulations. Through this, we report the discovery of a novel, biochemically active phenyl-piperazine pharmacophore, which is predicted to target the ATP-binding site and may serve as the starting point for medicinal chemistry optimization efforts. This is the first such report of an ATP-competitive inhibitor for eiF4A1, which is predicted to bind in the nucleotide cleft. Our novel interdisciplinary pipeline serves as a framework for future drug discovery efforts for targeting eiF4A1 and other proteins with complex kinetics.

11.
Cancer Res Commun ; 1(1): 1-16, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-35528192

RESUMO

A comprehensive constellation of somatic non-silent mutations and copy number (CN) variations in ocular adnexa marginal zone lymphoma (OAMZL) is unknown. By utilizing whole-exome sequencing in 69 tumors we define the genetic landscape of OAMZL. Mutations and CN changes in CABIN1 (30%), RHOA (26%), TBL1XR1 (22%), and CREBBP (17%) and inactivation of TNFAIP3 (26%) were among the most common aberrations. Candidate cancer driver genes cluster in the B-cell receptor (BCR), NFkB, NOTCH and NFAT signaling pathways. One of the most commonly altered genes is CABIN1, a calcineurin inhibitor acting as a negative regulator of the NFAT and MEF2B transcriptional activity. CABIN1 deletions enhance BCR-stimulated NFAT and MEF2B transcriptional activity, while CABIN1 mutations enhance only MEF2B transcriptional activity by impairing binding of mSin3a to CABIN1. Our data provide an unbiased identification of genetically altered genes that may play a role in the molecular pathogenesis of OAMZL and serve as therapeutic targets.


Assuntos
Neoplasias Oculares , Linfoma de Zona Marginal Tipo Células B , Humanos , Linfoma de Zona Marginal Tipo Células B/genética , Neoplasias Oculares/genética , Mutação/genética , Transdução de Sinais/genética , NF-kappa B/genética , Fatores de Transcrição MEF2/genética
12.
Cell Rep Med ; 1(7): 100128, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33205077

RESUMO

The approval of the first kinase inhibitor, Gleevec, ushered in a paradigm shift for oncological treatment-the use of genomic data for targeted, efficacious therapies. Since then, over 48 additional small-molecule kinase inhibitors have been approved, solidifying the case for kinases as a highly druggable and attractive target class. Despite the role deregulated kinase activity plays in cancer, only 8% of the kinome has been effectively "drugged." Moreover, 24% of the 634 human kinases are understudied. We have developed a comprehensive scoring system that utilizes differential gene expression, pathological parameters, overall survival, and mutational hotspot analysis to rank and prioritize clinically relevant kinases across 17 solid tumor cancers from The Cancer Genome Atlas. We have developed the clinical kinase index (CKI) app (http://cki.ccs.miami.edu) to facilitate interactive analysis of all kinases in each cancer. Collectively, we report that understudied kinases have potential clinical value as biomarkers or drug targets that warrant further study.


Assuntos
Antineoplásicos/metabolismo , Proteínas de Neoplasias/genética , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Bibliotecas de Moléculas Pequenas/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Descoberta de Drogas , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Terapia de Alvo Molecular , Mutação , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/mortalidade , Neoplasias/patologia , Ligação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Projetos de Pesquisa , Transdução de Sinais , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Software , Análise de Sobrevida
13.
Eur J Med Chem ; 189: 112023, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31978781

RESUMO

Disruptor of Telomeric Silencing 1-Like (DOT1L), the sole histone H3 lysine 79 (H3K79) methyltransferase, is required for leukemogenic transformation in a subset of leukemias bearing chromosomal translocations of the Mixed Lineage Leukemia (MLL) gene, as well as other cancers. Thus, DOT1L is an attractive therapeutic target and discovery of small molecule inhibitors remain of high interest. Herein, we are presenting screening results for a unique focused library of 1200 nucleoside analogs originally produced under the aegis of the NIH Pilot Scale Library Program. The complete nucleoside set was screened virtually against DOT1L, resulting in 210 putative hits. In vitro screening of the virtual hits resulted in validation of 11 compounds as DOT1L inhibitors clustered into two distinct chemical classes, adenosine-based inhibitors and a new chemotype that lacks adenosine. Based on the developed DOT1L ligand binding model, a structure-based design strategy was applied and a second-generation of non-nucleoside DOT1L inhibitors was developed. Newly synthesized compound 25 was the most potent DOT1L inhibitor in the new series with an IC50 of 1.0 µM, showing 40-fold improvement in comparison with hit 9 and exhibiting reasonable on target effects in a DOT1L dependent murine cell line. These compounds represent novel chemical probes with a unique non-nucleoside scaffold that bind and compete with the SAM binding site of DOT1L, thus providing foundation for further medicinal chemistry efforts to develop more potent compounds.


Assuntos
Medula Óssea/efeitos dos fármacos , Proliferação de Células , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Leucemia Experimental/tratamento farmacológico , Nucleosídeos/farmacologia , Triazóis/farmacologia , Animais , Medula Óssea/enzimologia , Simulação por Computador , Inibidores Enzimáticos/química , Leucemia Experimental/enzimologia , Camundongos , Nucleosídeos/química , Relação Estrutura-Atividade , Triazóis/química
14.
Cancers (Basel) ; 11(3)2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30871215

RESUMO

Glioblastoma (GBM) has a dismal prognosis and successful elimination of GBM stem cells (GSCs) is a high-priority as these cells are responsible for tumor regrowth following therapy and ultimately patient relapse. Natural products and their derivatives continue to be a source for the development of effective anticancer drugs and have been shown to effectively target pathways necessary for cancer stem cell self-renewal and proliferation. We generated a series of curcumin inspired bis-chalcones and examined their effect in multiple patient-derived GSC lines. Of the 19 compounds synthesized, four analogs robustly induced GSC death in six separate GSC lines, with a half maximal inhibitory concentration (IC50) ranging from 2.7⁻5.8 µM and significantly reduced GSC neurosphere formation at sub-cytotoxic levels. Structural analysis indicated that the presence of a methoxy group at position 3 of the lateral phenylic appendages was important for activity. Pathway and drug connectivity analysis of gene expression changes in response to treatment with the most active bis-chalcone 4j (the 3,4,5 trimethoxy substituted analog) suggested that the mechanism of action was the induction of endoplasmic reticulum (ER) stress and unfolded protein response (UPR) mediated cell death. This was confirmed by Western blot analysis in which 4j induced robust increases in CHOP, p-jun and caspase 12. The UPR is believed to play a significant role in GBM pathogenesis and resistance to therapy and as such represents a promising therapeutic target.

16.
Nat Commun ; 9(1): 5315, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30552330

RESUMO

Glioblastoma (GBM) is the most common primary adult brain tumor. Despite extensive efforts, the median survival for GBM patients is approximately 14 months. GBM therapy could benefit greatly from patient-specific targeted therapies that maximize treatment efficacy. Here we report a platform termed SynergySeq to identify drug combinations for the treatment of GBM by integrating information from The Cancer Genome Atlas (TCGA) and the Library of Integrated Network-Based Cellular Signatures (LINCS). We identify differentially expressed genes in GBM samples and devise a consensus gene expression signature for each compound using LINCS L1000 transcriptional profiling data. The SynergySeq platform computes disease discordance and drug concordance to identify combinations of FDA-approved drugs that induce a synergistic response in GBM. Collectively, our studies demonstrate that combining disease-specific gene expression signatures with LINCS small molecule perturbagen-response signatures can identify preclinical combinations for GBM, which can potentially be tested in humans.


Assuntos
Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Transcriptoma/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Conjuntos de Dados como Assunto , Combinação de Medicamentos , Descoberta de Drogas/métodos , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Perfilação da Expressão Gênica , Biblioteca Gênica , Redes Reguladoras de Genes , Humanos , Família Multigênica , Resultado do Tratamento , Estados Unidos , United States Food and Drug Administration/normas
17.
Front Pharmacol ; 9: 1201, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405416

RESUMO

Resveratrol (3, 4', 5-trihydroxy-trans-stilbene) is a natural phytoalexin found in grapes and has long been thought to be the answer to the "French Paradox." There is no shortage of preclinical and clinical studies investigating the broad therapeutic activity of resveratrol. However, in spite of many comprehensive reviews published on the bioactivity of resveratrol, there has yet to be a report focused on the variety and complexity of its structural binding properties, and its multi-targeted role. An improved understanding of disease mechanisms at the systems level has enabled targeted polypharmacology to mature into a rational drug discovery approach. Unlike traditional hit-to-lead campaigns that typically optimize activity and selectivity for a single target, polypharmacological drugs aim to selectively target multiple proteins, while avoiding critical off target interactions. This strategy bears promise of improved efficacy and reduced clinical attrition. This review seeks to investigate whether the bioactivity of resveratrol is due to a polypharmacological effect or promiscuity of the phenolic small molecule by examining the modes of binding with its diverse collection of protein targets. We focused on annotated targets, identified via the ChEMBL database, and matched these targets to a representative structure deposited in the Protein Data Bank (PDB), as crystal structures are most informative in understanding modes of binding at the atomic level. We discuss the structural aspects of resveratrol itself that permits binding to multiple proteins in various signaling pathways. Furthermore, we suggest that resveratrol's bioactivity is a result of scaffold promiscuity rather than polypharmacology, and the variety of binding modes across targets display little similarity in the pattern of target interaction.

19.
Cancer Cell ; 33(6): 1111-1127.e5, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29894694

RESUMO

Chromatin-modifying enzymes, and specifically the protein arginine methyltransferases (PRMTs), have emerged as important targets in cancer. Here, we investigated the role of CARM1 in normal and malignant hematopoiesis. Using conditional knockout mice, we show that loss of CARM1 has little effect on normal hematopoiesis. Strikingly, knockout of Carm1 abrogates both the initiation and maintenance of acute myeloid leukemia (AML) driven by oncogenic transcription factors. We show that CARM1 knockdown impairs cell-cycle progression, promotes myeloid differentiation, and ultimately induces apoptosis. Finally, we utilize a selective, small-molecule inhibitor of CARM1 to validate the efficacy of CARM1 inhibition in leukemia cells in vitro and in vivo. Collectively, this work suggests that targeting CARM1 may be an effective therapeutic strategy for AML.


Assuntos
Regulação Leucêmica da Expressão Gênica , Hematopoese/genética , Leucemia Mieloide/genética , Proteína-Arginina N-Metiltransferases/genética , Doença Aguda , Animais , Apoptose/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patologia , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Camundongos Transgênicos , Proteína-Arginina N-Metiltransferases/metabolismo
20.
Front Pharmacol ; 9: 218, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29615902

RESUMO

Glioblastoma multiforme (GBM) is the most malignant primary adult brain tumor. The current standard of care is surgical resection, radiation, and chemotherapy treatment, which extends life in most cases. Unfortunately, tumor recurrence is nearly universal and patients with recurrent glioblastoma typically survive <1 year. Therefore, new therapies and therapeutic combinations need to be developed that can be quickly approved for use in patients. However, in order to gain approval, therapies need to be safe as well as effective. One possible means of attaining rapid approval is repurposing FDA approved compounds for GBM therapy. However, candidate compounds must be able to penetrate the blood-brain barrier (BBB) and therefore a selection process has to be implemented to identify such compounds that can eliminate GBM tumor expansion. We review here psychiatric and non-psychiatric compounds that may be effective in GBM, as well as potential drugs targeting cell death pathways. We also discuss the potential of data-driven computational approaches to identify compounds that induce cell death in GBM cells, enabled by large reference databases such as the Library of Integrated Network Cell Signatures (LINCS). Finally, we argue that identifying pathways dysregulated in GBM in a patient specific manner is essential for effective repurposing in GBM and other gliomas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA