Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 290(20): 4899-4920, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37329249

RESUMO

Recent advances in mRNA therapeutics demand efficient toolkits for the incorporation of nucleoside analogues into mRNA suitable for downstream applications. Herein, we report the application of a versatile enzyme cascade for the triphosphorylation of a broad range of nucleoside analogues, including unprotected nucleobases containing chemically labile moieties. Our biomimetic system was suitable for the preparation of nucleoside triphosphates containing adenosine, cytidine, guanosine, uridine and non-canonical core structures, as determined by capillary electrophoresis coupled to mass spectrometry. This enabled us to establish an efficient workflow for transcribing and purifying functional mRNA containing these nucleoside analogues, combined with mass spectrometric verification of analogue incorporation. Our combined methodology allows for analyses of how incorporation of nucleoside analogues that are commercially unavailable as triphosphates affect mRNA properties: The translational fidelity of the produced mRNA was demonstrated in analyses of how incorporated adenosine analogues impact translational recoding. For the SARS-CoV-2 frameshifting site, analyses of the mRNA pseudoknot structure using circular dichroism spectroscopy allowed insight into how the pharmacologically active 7-deazaadenosine destabilises RNA secondary structure, consistent with observed changes in recoding efficiency.


Assuntos
COVID-19 , Nucleosídeos , Humanos , RNA Mensageiro/genética , Biomimética , SARS-CoV-2/genética , Adenosina
2.
Adv Healthc Mater ; 11(11): e2102345, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35114730

RESUMO

Despite intensive research and progress in personalized medicine, pancreatic ductal adenocarcinoma remains one of the deadliest cancer entities. Pancreatic duct-like organoids (PDLOs) derived from human pluripotent stem cells (PSCs) or pancreatic cancer patient-derived organoids (PDOs) provide unique tools to study early and late stage dysplasia and to foster personalized medicine. However, such advanced systems are neither rapidly nor easily accessible and require an in vivo niche to study tumor formation and interaction with the stroma. Here, the establishment of the porcine urinary bladder (PUB) is revealed as an advanced organ culture model for shaping an ex vivo pancreatic niche. This model allows pancreatic progenitor cells to enter the ductal and endocrine lineages, while PDLOs further mature into duct-like tissue. Accordingly, the PUB offers an ex vivo platform for earliest pancreatic dysplasia and cancer if PDLOs feature KRASG12D mutations. Finally, it is demonstrated that PDOs-on-PUB i) resemble primary pancreatic cancer, ii) preserve cancer subtypes, iii) enable the study of niche epithelial crosstalk by spiking in pancreatic stellate and immune cells into the grafts, and finally iv) allow drug testing. In summary, the PUB advances the existing pancreatic cancer models by adding feasibility, complexity, and customization at low cost and high flexibility.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Células-Tronco Pluripotentes , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Humanos , Organoides/patologia , Neoplasias Pancreáticas/patologia , Suínos , Bexiga Urinária , Neoplasias Pancreáticas
3.
Cancers (Basel) ; 13(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064221

RESUMO

Real-time isolation, propagation, and pharmacotyping of patient-derived pancreatic cancer organoids (PDOs) may enable treatment response prediction and personalization of pancreatic cancer (PC) therapy. In our methodology, PDOs are isolated from 54 patients with suspected or confirmed PC in the framework of a prospective feasibility trial. The drug response of single agents is determined by a viability assay. Areas under the curves (AUC) are clustered for each drug, and a prediction score is developed for combined regimens. Pharmacotyping profiles are obtained from 28 PDOs (efficacy 63.6%) after a median of 53 days (range 21-126 days). PDOs exhibit heterogeneous responses to the standard-of-care drugs, and are classified into high, intermediate, or low responder categories. Our developed prediction model allows a successful response prediction in treatment-naïve patients with an accuracy of 91.1% for first-line and 80.0% for second-line regimens, respectively. The power of prediction declines in pretreated patients (accuracy 40.0%), particularly with more than one prior line of chemotherapy. Progression-free survival (PFS) is significantly longer in previously treatment-naïve patients receiving a predicted tumor sensitive compared to a predicted tumor resistant regimen (mPFS 141 vs. 46 days; p = 0.0048). In conclusion, generation and pharmacotyping of PDOs is feasible in clinical routine and may provide substantial benefit.

4.
Int J Mol Sci ; 19(10)2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30248944

RESUMO

Thioredoxin (Trx) overexpression is known to be a cause of chemotherapy resistance in various tumor entities. However, Trx effects on resistance are complex and depend strictly on tissue type. In the present study, we analyzed the impact of the Trx system on intrinsic chemoresistance of human glioblastoma multiforme (GBM) cells to cytostatic drugs. Resistance of GBM cell lines and primary cells to drugs and signaling inhibitors was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Impact of Trx inhibition on apoptosis was investigated by proteome profiling of a subset of proteins and annexin V apoptosis assays. Trx-interacting protein (TXNIP) was overexpressed by transfection and protein expression was determined by immunoblotting. Pharmacological inhibition of Trx by 1-methyl-2-imidazolyl-disulfide (PX-12) reduced viability of three GBM cell lines, induced expression of active caspase-3, and reduced phosphorylation of AKT-kinase and expression of ß-catenin. Sensitivity to cisplatin could be restored by both PX-12 and recombinant expression of the upstream Trx inhibitor TXNIP, respectively. In addition, PX-12 also sensitized primary human GBM cells to temozolomide. Combined inhibition of Trx and the phosphatidylinositide 3-kinase (PI3K) pathway resulted in massive cell death. We conclude that the Trx system and the PI3K pathway act as a sequential cascade and could potentially present a new drug target.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Citostáticos/farmacologia , Tiorredoxinas/metabolismo , Western Blotting , Proteínas de Transporte/antagonistas & inibidores , Linhagem Celular Tumoral , Dissulfetos/farmacologia , Glioblastoma/metabolismo , Glioma/metabolismo , Humanos , Imidazóis/farmacologia , Modelos Biológicos , Temozolomida/farmacologia , Tiorredoxinas/antagonistas & inibidores
5.
Biochim Biophys Acta ; 1830(11): 4999-5005, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23872354

RESUMO

BACKGROUND: Glutaredoxins (Grxs) catalyze the reduction of protein disulfides via the dithiol mechanism and the de-/glutathionylation of substrates via the monothiol mechanism. These rapid, specific, and generally also reversible modifications are part of various signaling cascades regulating for instance cell proliferation, differentiation and apoptosis. Even though crucial functions of the conserved, mitochondrial Grx2a and the cytosolic/nuclear Grx2c isoforms have been proposed, only a few substrates have been identified in vitro or in vivo. The significance of redox signaling is emerging, yet a general lack of methods for the time-resolved analysis of these distinct and rapid modifications in vivo constitutes the biggest challenge in the redox signaling field. METHODS AND RESULTS: Here, we have identified potential interaction partners for Grx2 isoforms in human HeLa cells and mouse tissues by an intermediate trapping approach. Some of the 50 potential substrates are part of the cytoskeleton or act in protein folding, cellular signaling and metabolism. Part of these interactions were further verified by immunoprecipitation or a newly established 2-D redox blot. CONCLUSIONS: Our study demonstrates that Grx2 catalyzes both the specific oxidation and the reduction of cysteinyl residues in the same compartment at the same time and without affecting the global cellular thiol-redox state. GENERAL SIGNIFICANCE: The knowledge of specific targets will be helpful in understanding the functions of Grx2. The 2-D redox blot may be useful for the analysis of the overall thiol-redox state of proteins with high molecular weight and numerous cysteinyl residues, that evaded analysis by previously described methods.


Assuntos
Dissulfetos/metabolismo , Glutarredoxinas/metabolismo , Proteínas/metabolismo , Tolueno/análogos & derivados , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Citosol/metabolismo , Células HeLa , Humanos , Mamíferos/metabolismo , Camundongos , Oxirredução , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas , Tolueno/metabolismo
6.
Proc Natl Acad Sci U S A ; 108(51): 20532-7, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22139372

RESUMO

Cellular functions and survival are dependent on a tightly controlled redox potential. Currently, an increasing amount of data supports the concept of local changes in the redox environment and specific redox signaling events controlling cell function. Specific protein thiol groups are the major targets of redox signaling and regulation. Thioredoxins and glutaredoxins catalyze reversible thiol-disulfide exchange reactions and are primary regulators of the protein thiol redox state. Here, we demonstrate that embryonic brain development depends on the enzymatic activity of glutaredoxin 2. Zebrafish with silenced expression of glutaredoxin 2 lost virtually all types of neurons by apoptotic cell death and the ability to develop an axonal scaffold. As demonstrated in zebrafish and in a human cellular model for neuronal differentiation, glutaredoxin 2 controls axonal outgrowth via thiol redox regulation of collapsin response mediator protein 2, a central component of the semaphorin pathway. This study provides an example of a specific thiol redox regulation essential for vertebrate embryonic development.


Assuntos
Encéfalo/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Glutarredoxinas/química , Peixe-Zebra/embriologia , Animais , Apoptose , Axônios/fisiologia , Linhagem Celular Tumoral , Biologia do Desenvolvimento , Glutarredoxinas/genética , Humanos , Neuritos/metabolismo , Oxirredução , Proteínas Recombinantes/química , Transdução de Sinais , Vertebrados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA