Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38399219

RESUMO

The repertoire of currently available antiviral drugs spans therapeutic applications against a number of important human pathogens distributed worldwide. These include cases of the pandemic severe acute respiratory coronavirus type 2 (SARS-CoV-2 or COVID-19), human immunodeficiency virus type 1 (HIV-1 or AIDS), and the pregnancy- and posttransplant-relevant human cytomegalovirus (HCMV). In almost all cases, approved therapies are based on direct-acting antivirals (DAAs), but their benefit, particularly in long-term applications, is often limited by the induction of viral drug resistance or side effects. These issues might be addressed by the additional use of host-directed antivirals (HDAs). As a strong input from long-term experiences with cancer therapies, host protein kinases may serve as HDA targets of mechanistically new antiviral drugs. The study demonstrates such a novel antiviral strategy by targeting the major virus-supportive host kinase CDK7. Importantly, this strategy focuses on highly selective, 3D structure-derived CDK7 inhibitors carrying a warhead moiety that mediates covalent target binding. In summary, the main experimental findings of this study are as follows: (1) the in vitro verification of CDK7 inhibition and selectivity that confirms the warhead covalent-binding principle (by CDK-specific kinase assays), (2) the highly pronounced antiviral efficacies of the hit compounds (in cultured cell-based infection models) with half-maximal effective concentrations that reach down to picomolar levels, (3) a particularly strong potency of compounds against strains and reporter-expressing recombinants of HCMV (using infection assays in primary human fibroblasts), (4) additional activity against further herpesviruses such as animal CMVs and VZV, (5) unique mechanistic properties that include an immediate block of HCMV replication directed early (determined by Western blot detection of viral marker proteins), (6) a substantial drug synergism in combination with MBV (measured by a Loewe additivity fixed-dose assay), and (7) a strong sensitivity of clinically relevant HCMV mutants carrying MBV or ganciclovir resistance markers. Combined, the data highlight the huge developmental potential of this host-directed antiviral targeting concept utilizing covalently binding CDK7 inhibitors.

2.
Cells ; 11(24)2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36552794

RESUMO

Herpesviruses replicate their genomes and assemble their capsids in the host cell nucleus. To progress towards morphogenesis in the cytoplasm, herpesviruses evolved the strategy of nuclear egress as a highly regulated process of nucleo-cytoplasmic capsid transition. The process is conserved among α-, ß- and γ-herpesviruses and involves the formation of a core and multicomponent nuclear egress complex (NEC). Core NEC is assembled by the interaction between the nucleoplasmic hook protein, i.e., pUL53 (human cytomegalovirus, HCMV), and the integral membrane-associated groove protein, i.e., pUL50. Our study aimed at the question of whether a panherpesviral NEC scaffold may enable hook-into-groove interaction across herpesviral subfamilies. For this purpose, NEC constructs were generated for members of all three subfamilies and analyzed for multi-ligand interaction using a yeast two-hybrid (Y2H) approach with randomized pUL53 mutagenesis libraries. The screening identified ten library clones displaying cross-viral shared hook-into-groove interaction. Interestingly, a slightly modified Y2H screening strategy provided thirteen further changed-hook pUL53 clones having lost parental pUL50 interaction but gained homolog interaction. In addition, we designed a sequence-predicted hybrid construct based on HCMV and Epstein-Barr virus (EBV) core NEC proteins and identified a cross-viral interaction phenotype. Confirmation was provided by applying protein-protein interaction analyses in human cells, such as coimmunoprecipitation settings, confocal nuclear rim colocalization assays, and HCMV ΔUL53 infection experiments with pUL53-complementing cells. Combined, the study provided the first examples of cross-viral NEC interaction patterns and revealed a higher yield of human cell-confirmed binding clones using a library exchange rate of 3.4 than 2.7. Thus, the study provides improved insights into herpesviral NEC protein binding specificities of core NEC formation. This novel information might be exploited to gain a potential target scaffold for the development of broadly acting NEC-directed inhibitory small molecules.


Assuntos
Infecções por Vírus Epstein-Barr , Humanos , Herpesvirus Humano 4 , Citomegalovirus , Núcleo Celular/metabolismo , Simplexvirus , Mutagênese
3.
Viruses ; 14(10)2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36298840

RESUMO

The human cytomegalovirus (HCMV) is a member of the beta-herpesvirus family and inflicts life-long latent infections in its hosts. HCMV has been shown to manipulate and dysregulate many cellular processes. One major interactor with the cellular host is the viral kinase pUL97. The UL97 gene is essential for viral replication, and kinase-deficient mutants of pUL97 display a severe replication defect. Recently, another group established an analog-sensitive version of the pUL97 protein. This mutant kinase can be treated with a non-hydrolysable ATP analog, thereby inhibiting its kinase function. This process is reversible by removing the ATP analog by media change. We introduced this mutant version of the pUL97 protein into the laboratory strain Ad169 of HCMV, BADwt, creating a BAD-UL97-as1 viral mutant. This mutant virus replicated normally in infected cells in the absence of the ATP analog and maintained its ability to phosphorylate its cellular substrates. However, when treated with the ATP analog, BAD-UL97-as1 displayed a defect in the production of intra- and extracellular viral DNA and in the production of viral progeny. Furthermore, in the presence of 3MB-PP1, a well-established substrate of pUL97 was no longer hyperphosphorylated. This effect was detectable as early as 4 h post treatment, which allows for studies on pUL97 without the complication of low viral titers. Nevertheless, we observed off-target effects of 3MB-PP1 on several cellular processes, which should be considered with this approach.


Assuntos
Citomegalovirus , DNA Viral , Humanos , Citomegalovirus/fisiologia , DNA Viral/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Replicação Viral , Trifosfato de Adenosina/metabolismo , Fosforilação
4.
Antiviral Res ; 159: 84-94, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30268914

RESUMO

Human cytomegalovirus (HCMV) is a major human pathogen with seropositivity rates in the adult population ranging between 40% and 95%. HCMV infection is associated with severe pathology, such as life-threatening courses of infection in immunocompromised individuals and neonates. Current standard therapy with valganciclovir has the disadvantage of adverse side effects and viral drug resistance. A novel anti-HCMV drug, letermovir, has been approved recently, so that improved therapy options are available. Nevertheless, even more so far unexploited classes of compounds and molecular modes of action will be required for a next generation of antiherpesviral treatment strategies. In this study, we focused on the analysis of the antiviral potency of a novel class of compounds, i.e. pyrrolopyridine analogs, and identified both hit compounds and their target protein candidates. In essence, we provide novel evidence as follows: (i) screening hit SC88941 is highly active in inhibiting HCMV replication in primary human fibroblasts with an EC50 value of 0.20 ±â€¯0.01 µM in the absence of cytotoxicity, (ii) inhibition occurs at the early-late stage of viral protein production and shows reinforcing effects upon LMV cotreatment, (iii) among the viruses analyzed, antiviral activity was most pronounced against ß-herpesviruses (HCMV, HHV-6A) and intermediate against adenovirus (HAdV-2), (iv) induction of SC88941 resistance was not detectable, thus differed from the induction of ganciclovir resistance, (v) a linker-coupled model compound was used for mass spectrometry-based target identification, thus yielding several drug-binding target proteins and (vi) a first confocal imaging approach used for addressing intracellular effects of SC88941 indicated qualitative and quantitative alteration of viral protein expression and localization. Thus, our findings suggest a multifaceted pattern of compound-target binding in connection with an unusual mode of action, opening up further opportunities of antiviral drug development.


Assuntos
Antivirais/farmacologia , Citomegalovirus/efeitos dos fármacos , Pirimidinas/farmacologia , Pirróis/farmacologia , Proteínas Virais/metabolismo , Adenoviridae/efeitos dos fármacos , Antivirais/síntese química , Descoberta de Drogas , Farmacorresistência Viral , Fibroblastos/virologia , Herpesviridae/efeitos dos fármacos , Humanos , Espectrometria de Massas , Orthomyxoviridae/efeitos dos fármacos , Pirimidinas/síntese química , Pirróis/síntese química , Replicação Viral/efeitos dos fármacos
5.
Front Immunol ; 6: 162, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25926832

RESUMO

Heat shock protein 70 (Hsp70) is frequently overexpressed in tumor cells. An unusual cell surface localization could be demonstrated on a large variety of solid tumors including lung, colorectal, breast, squamous cell carcinomas of the head and neck, prostate and pancreatic carcinomas, glioblastomas, sarcomas and hematological malignancies, but not on corresponding normal tissues. A membrane (m)Hsp70-positive phenotype can be determined either directly on single cell suspensions of tumor biopsies by flow cytometry using cmHsp70.1 monoclonal antibody or indirectly in the serum of patients using a novel lipHsp70 ELISA. A mHsp70-positive tumor phenotype has been associated with highly aggressive tumors, causing invasion and metastases and resistance to cell death. However, natural killer (NK), but not T cells were found to kill mHsp70-positive tumor cells after activation with a naturally occurring Hsp70 peptide (TKD) plus low dose IL-2 (TKD/IL-2). Safety and tolerability of ex vivo TKD/IL-2 stimulated, autologous NK cells has been demonstrated in patients with metastasized colorectal and non-small cell lung cancer (NSCLC) in a phase I clinical trial. Based on promising clinical results of the previous study, a phase II randomized clinical study was initiated in 2014. The primary objective of this multicenter proof-of-concept trial is to examine whether an adjuvant treatment of NSCLC patients after platinum-based radiochemotherapy (RCTx) with TKD/IL-2 activated, autologous NK cells is clinically effective. As a mHsp70-positive tumor phenotype is associated with poor clinical outcome only mHsp70-positive tumor patients will be recruited into the trial. The primary endpoint of this study will be the comparison of the progression-free survival of patients treated with ex vivo activated NK cells compared to patients who were treated with RCTx alone. As secondary endpoints overall survival, toxicity, quality-of-life, and biological responses will be determined in both study groups.

6.
J Thorac Oncol ; 10(1): 156-63, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25247337

RESUMO

INTRODUCTION: Afatinib is an effective first-line treatment in patients with epidermal growth factor receptor (EGFR)-mutated non-small-cell lung cancer (NSCLC) and has shown activity in patients progressing on EGFR-tyrosine kinase inhibitors (TKIs). First-line afatinib is also effective in patients with central nervous system (CNS) metastasis. Here we report on outcomes of pretreated NSCLC patients with CNS metastasis who received afatinib within a compassionate use program. METHODS: Patients with NSCLC progressing after at least one line of chemotherapy and one line of EGFR-TKI treatment received afatinib. Medical history, patient demographics, EGFR mutational status, and adverse events including tumor progression were documented. RESULTS: From 2010 to 2013, 573 patients were enrolled and 541 treated with afatinib. One hundred patients (66% female; median age, 60 years) had brain metastases and/or leptomeningeal disease with 74% having documented EGFR mutation. Median time to treatment failure for patients with CNS metastasis was 3.6 months, and did not differ from a matched group of 100 patients without CNS metastasis. Thirty-five percent (11 of 31) of evaluable patients had a cerebral response, five (16%) responded exclusively in brain. Response duration (range) was 120 (21-395) days. Sixty-six percent (21 of 32) of patients had cerebral disease control on afatinib. Data from one patient with an impressive response showed an afatinib concentration in the cerebrospinal fluid of nearly 1 nMol. CONCLUSION: Afatinib appears to penetrate into the CNS with concentrations high enough to have clinical effect on CNS metastases. Afatinib may therefore be an effective treatment for heavily pretreated patients with EGFR-mutated or EGFR-TKI-sensitive NSCLC and CNS metastasis.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Meníngeas/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Quinazolinas/uso terapêutico , Adulto , Afatinib , Idoso , Neoplasias Encefálicas/secundário , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Progressão da Doença , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Feminino , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Masculino , Neoplasias Meníngeas/secundário , Pessoa de Meia-Idade , Mutação , Resultado do Tratamento
7.
Science ; 345(6197): 640-3, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-25104379

RESUMO

Computation of lattice energies to an accuracy sufficient to distinguish polymorphs is a fundamental bottleneck in crystal structure prediction. For the lattice energy of the prototypical benzene crystal, we combined the quantum chemical advances of the last decade to attain sub-kilojoule per mole accuracy, an order-of-magnitude improvement in certainty over prior calculations that necessitates revision of the experimental extrapolation to 0 kelvin. Our computations reveal the nature of binding by improving on previously inaccessible or inaccurate multibody and many-electron contributions and provide revised estimates of the effects of temperature, vibrations, and relaxation. Our demonstration raises prospects for definitive first-principles resolution of competing polymorphs in molecular crystal structure prediction.

8.
Curr Biol ; 22(16): 1516-23, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22818914

RESUMO

The accumulation of γ-tubulin at the centrosomes during maturation is a key mechanism that ensures the formation of two dense microtubule (MT) asters in cells entering mitosis, defining spindle pole positioning and ensuring the faithful outcome of cell division. Centrosomal γ-tubulin recruitment depends on the adaptor protein NEDD1/GCP-WD and is controlled by the kinase Plk1. Surprisingly, and although Plk1 binds and phosphorylates NEDD1 at multiple sites, the mechanism by which this kinase promotes the centrosomal recruitment of γ-tubulin has remained elusive. Using Xenopus egg extracts and mammalian cells, we now show that it involves Nek9, a NIMA-family kinase required for normal mitotic progression and spindle organization. Nek9 phosphorylates NEDD1 on Ser377 driving its recruitment and thereby that of γ-tubulin to the centrosome in mitotic cells. This role of Nek9 requires its activation by Plk1-dependent phosphorylation but is independent from the downstream related kinases Nek6 and Nek7. Our data contribute to understand the mechanism by which Plk1 promotes the recruitment of γ-tubulin to the centrosome in dividing cells and position Nek9 as a key regulator of centrosome maturation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Centrossomo/fisiologia , Células HeLa , Humanos , Camundongos , Microtúbulos/fisiologia , Quinases Relacionadas a NIMA , Fosforilação , Coelhos , Xenopus , Quinase 1 Polo-Like
9.
J Cell Sci ; 120(Pt 24): 4367-76, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18057029

RESUMO

To identify novel proteins required for receptor-mediated endocytosis, we have developed an RNAi-based screening method in Drosophila S2 cells, based on uptake of a scavenger receptor ligand. Some known endocytic proteins are essential for endocytosis in this assay, including clathrin and alpha-adaptin; however, other proteins important for synaptic vesicle endocytosis are not required. In a small screen for novel endocytic proteins, we identified the Drosophila homologue of Vps35, a component of the retromer complex, involved in endosome-to-Golgi trafficking. Loss of Vps35 inhibits scavenger receptor ligand endocytosis, and causes mislocalisation of a number of receptors and endocytic proteins. Vps35 has tumour suppressor properties because its loss leads to overproliferation of blood cells in larvae. Its loss also causes signalling defects at the neuromuscular junction, including upregulation of TGFbeta/BMP signalling and excessive formation of synaptic terminals. Vps35 negatively regulates actin polymerisation, and genetic interactions suggest that some of the endocytic and signalling defects of vps35 mutants are due to this function.


Assuntos
Actinas/metabolismo , Clatrina/metabolismo , Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Subunidades alfa do Complexo de Proteínas Adaptadoras/metabolismo , Animais , Linhagem Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Endocitose/fisiologia , Regulação da Expressão Gênica , Hemócitos/metabolismo , Hemócitos/fisiologia , Mutação , Junção Neuromuscular/metabolismo , Transporte Proteico/fisiologia , Interferência de RNA , Transdução de Sinais , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Transporte Vesicular/genética
10.
J Clin Endocrinol Metab ; 90(8): 4457-64, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15941870

RESUMO

CONTEXT: In contrast to papillary and follicular thyroid cancer, medullary thyroid cancer (MTC) remains difficult to treat due to its unresponsiveness to radioiodine therapy and its limited responsiveness to chemo- and radiotherapy. OBJECTIVE: To investigate an alternative therapeutic approach, we examined the feasibility of radioiodine therapy of MTC after human sodium iodide symporter (hNIS) gene transfer using the calcitonin promoter to target hNIS gene expression to MTC cells (TT). DESIGN: TT cells were stably transfected with an expression vector, in which hNIS cDNA was coupled to the calcitonin promoter. Functional hNIS expression was confirmed by iodide accumulation assays, Northern and Western blot analysis, immunostaining, and in vitro clonogenic assay. RESULTS: hNIS-transfected TT cells showed perchlorate-sensitive iodide uptake, accumulating 125-I about 12-fold in vitro with organification of 4% of accumulated iodide resulting in a significant decrease in iodide efflux. NIS protein expression was confirmed by Western blot analysis using a monoclonal hNIS-specific antibody, which revealed a major band of a molecular mass of 80-90 kDa. In addition, immunostaining of hNIS-transfected TT cells revealed hNIS-specific immunoreactivity, which was primarily membrane associated. In an in vitro clonogenic assay, 84% of NIS-transfected TT cells were killed by exposure to 131-I, whereas only about 0.6% of control cells were killed. CONCLUSIONS: A therapeutic effect of 131-I has been demonstrated in MTC cells after induction of tissue-specific iodide uptake activity by calcitonin promoter-directed hNIS expression. This study demonstrates the potential of NIS as a therapeutic gene, allowing radioiodine therapy of MTC after tissue-specific NIS gene transfer.


Assuntos
Carcinoma Medular/radioterapia , Radioisótopos do Iodo/uso terapêutico , Simportadores/genética , Neoplasias da Glândula Tireoide/radioterapia , Northern Blotting , Western Blotting , Neoplasias da Mama , Calcitonina/genética , Carcinoma Medular/genética , Linhagem Celular Tumoral , DNA Complementar , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Iodetos/farmacocinética , Regiões Promotoras Genéticas/genética , Neoplasias da Glândula Tireoide/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA