Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(1): 2-16, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38134304

RESUMO

Enzyme inhibitors that form covalent bonds with their targets are being increasingly pursued in drug development. Assessing their biochemical activity relies on time-dependent assays, which are distinct and more complex compared with methods commonly employed for reversible-binding inhibitors. To provide general guidance to the covalent inhibitor development community, we explored methods and reported kinetic values and experimental factors in determining the biochemical activity of various covalent epidermal growth factor receptor (EGFR) inhibitors. We showcase how liquid handling and assay reagents impact kinetic parameters and potency interpretations, which are critical for structure-kinetic relationships and covalent drug design. Additionally, we include benchmark kinetic values with reference inhibitors, which are imperative, as covalent EGFR inhibitor kinetic values are infrequently consistent in the literature. This overview seeks to inform best practices for developing new covalent inhibitors and highlight appropriate steps to address gaps in knowledge presently limiting assay reliability and reproducibility.


Assuntos
Inibidores Enzimáticos , Receptores ErbB , Reprodutibilidade dos Testes , Inibidores Enzimáticos/farmacologia , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química
2.
ACS Med Chem Lett ; 13(12): 1856-1863, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36518696

RESUMO

Lazertinib (YH25448) is a novel third-generation tyrosine kinase inhibitor (TKI) developed as a treatment for EGFR mutant non-small cell lung cancer. To better understand the nature of lazertinib inhibition, we determined crystal structures of lazertinib in complex with both WT and mutant EGFR and compared its binding mode to that of structurally related EGFR TKIs. We observe that lazertinib binds EGFR with a distinctive pyrazole moiety enabling hydrogen bonds and van der Waals interactions facilitated through hydrophilic amine and hydrophobic phenyl groups, respectively. Biochemical assays and cell studies confirm that lazertinib effectively targets EGFR(L858R/T790M) and to a lesser extent HER2. The molecular basis for lazertinib inhibition of EGFR reported here highlights previously unexplored binding interactions leading to improved medicinal chemistry properties compared to clinically approved osimertinib (AZD9291) and offers novel strategies for structure-guided design of tyrosine kinase inhibitors.

3.
Anal Biochem ; 384(1): 56-67, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18762159

RESUMO

Spleen tyrosine kinase (Syk) is involved in the activation of cells implicated in allergic or autoimmune diseases and certain cancers. Therefore, Syk inhibitors may prove to be effective in treating diseases where Syk activity or expression is increased or deregulated. We developed a continuous and direct (noncoupled) fluorescence intensity assay for measuring Syk activity using purified recombinant enzyme or crude lysates generated from anti-immunoglobulin M (IgM) antibody-treated RAMOS cells. The assay is based on the chelation-enhanced fluorophore 8-hydroxy-5-(N,N-dimethylsulfonamido)-2-methylquinoline (referred to as Sox), which has been incorporated into a peptide substrate selected for robust detection of Syk activity. This homogeneous assay is simple to use, provides considerably more information, and has been adapted to a 384-well, low-volume microtiter plate format that can be used for the high-throughput identification and kinetic characterization of Syk inhibitors. The assay can be performed with a wide range of adenosine triphosphate (ATP) concentrations and, therefore, can be used to analyze ATP-competitive and ATP-noncompetitive/allosteric kinase inhibitors. Measurement of Syk activity in RAMOS crude cell lysates or immunoprecipitation (IP) capture formats may serve as a physiologically more relevant enzyme source. These Sox-based continuous and homogeneous assays provide a valuable set of tools for studying Syk signaling and for defining inhibitors that may be more effective in controlling disease.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/metabolismo , Células Cultivadas , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Cinética , Inibidores de Proteínas Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , Proteínas Recombinantes/metabolismo , Quinase Syk
4.
Science ; 319(5870): 1665-8, 2008 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-18356527

RESUMO

Activation of cyclin-dependent kinase 1 (Cdk1) has been linked to cell death of postmitotic neurons in brain development and disease. We found that Cdk1 phosphorylated the transcription factor FOXO1 at Ser249 in vitro and in vivo. The phosphorylation of FOXO1 at Ser249 disrupted FOXO1 binding with 14-3-3 proteins and thereby promoted the nuclear accumulation of FOXO1 and stimulated FOXO1-dependent transcription, leading to cell death in neurons. In proliferating cells, Cdk1 induced FOXO1 Ser249 phosphorylation at the G2/M phase of the cell cycle, resulting in FOXO1-dependent expression of the mitotic regulator Polo-like kinase (Plk). These findings define a conserved signaling link between Cdk1 and FOXO1 that may have a key role in diverse biological processes, including the degeneration of postmitotic neurons.


Assuntos
Proteína Quinase CDC2/metabolismo , Ciclo Celular , Fatores de Transcrição Forkhead/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteínas 14-3-3/metabolismo , Animais , Apoptose , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células , Células Cultivadas , Proteína Forkhead Box O1 , Humanos , Camundongos , Células NIH 3T3 , Neurônios/citologia , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Ratos , Serina/metabolismo , Transdução de Sinais , Transcrição Gênica , Quinase 1 Polo-Like
5.
Nat Med ; 13(12): 1467-75, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18037896

RESUMO

The serine-threonine kinases Pim-1 and Akt regulate cellular proliferation and survival. Although Akt is known to be a crucial signaling protein in the myocardium, the role of Pim-1 has been overlooked. Pim-1 expression in the myocardium of mice decreased during postnatal development, re-emerged after acute pathological injury in mice and was increased in failing hearts of both mice and humans. Cardioprotective stimuli associated with Akt activation induced Pim-1 expression, but compensatory increases in Akt abundance and phosphorylation after pathological injury by infarction or pressure overload did not protect the myocardium in Pim-1-deficient mice. Transgenic expression of Pim-1 in the myocardium protected mice from infarction injury, and Pim-1 expression inhibited cardiomyocyte apoptosis with concomitant increases in Bcl-2 and Bcl-X(L) protein levels, as well as in Bad phosphorylation levels. Relative to nontransgenic controls, calcium dynamics were significantly enhanced in Pim-1-overexpressing transgenic hearts, associated with increased expression of SERCA2a, and were depressed in Pim-1-deficient hearts. Collectively, these data suggest that Pim-1 is a crucial facet of cardioprotection downstream of Akt.


Assuntos
Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/fisiologia , Animais , Apoptose , Núcleo Celular/metabolismo , Humanos , Camundongos , Camundongos Knockout , Miocárdio/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/biossíntese , Ratos , Proteína bcl-X/metabolismo
6.
Mol Biol Cell ; 14(8): 3216-29, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12925758

RESUMO

Cortactin is an F-actin binding protein that activates actin-related protein 2/3 complex and is localized within lamellipodia. Cortactin is a substrate for Src and other protein tyrosine kinases involved in cell motility, where its phosphorylation on tyrosines 421, 466, and 482 in the carboxy terminus is required for cell movement and metastasis. In spite of the importance of cortactin tyrosine phosphorylation in cell motility, little is known regarding the structural, spatial, or signaling requirements regulating cortactin tyrosine phosphorylation. Herein, we report that phosphorylation of cortactin tyrosine residues in the carboxy terminus requires the aminoterminal domain and Rac1-mediated localization to the cell periphery. Phosphorylation-specific antibodies directed against tyrosine 421 and 466 were produced to study the regulation and localization of tyrosine phosphorylated cortactin. Phosphorylation of cortactin tyrosine 421 and 466 was elevated in response to Src, epidermal growth factor receptor and Rac1 activation, and tyrosine 421 phosphorylated cortactin localized with F-actin in lamellipodia and podosomes. Cortactin tyrosine phosphorylation is progressive, with tyrosine 421 phosphorylation required for phosphorylation of tyrosine 466. These results indicate that cortactin tyrosine phosphorylation requires Rac1-induced cortactin targeting to cortical actin networks, where it is tyrosine phosphorylated in hierarchical manner that is closely coordinated with its ability to regulate actin dynamics.


Assuntos
Citoesqueleto/metabolismo , Proteínas dos Microfilamentos/metabolismo , Pseudópodes/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Quinases da Família src/metabolismo , Actinas/metabolismo , Animais , Células Cultivadas , Cortactina , Camundongos , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Transdução de Sinais/fisiologia , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA