Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cells ; 12(23)2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38067175

RESUMO

Sarcoidosis is a multisystemic disease characterized by non-caseating granuloma infiltrating various organs. The form with symptomatic muscular involvement is called muscular sarcoidosis. The impact of immune cells composing the granuloma on the skeletal muscle is misunderstood. Here, we investigated the granuloma-skeletal muscle interactions through spatial transcriptomics on two patients affected by muscular sarcoidosis. Five major transcriptomic clusters corresponding to perigranuloma, granuloma, and three successive muscle tissue areas (proximal, intermediate, and distal) around the granuloma were identified. Analyses revealed upregulated pathways in the granuloma corresponding to the activation of T-lymphocytes and monocytes/macrophages cytokines, the upregulation of extracellular matrix signatures, and the induction of the TGF-ß signaling in the perigranuloma. A comparison between the proximal and distal muscles to the granuloma revealed an inverse correlation between the distance to the granuloma and the upregulation of cellular response to interferon-γ/α, TNF-α, IL-1,4,6, fibroblast proliferation, epithelial to mesenchymal cell transition, and the downregulation of muscle gene expression. These data shed light on the intercommunications between granulomas and the muscle tissue and provide pathophysiological mechanisms by showing that granuloma immune cells have a direct impact on proximal muscle tissue by promoting its progressive replacement by fibrosis via the expression of pro-inflammatory and profibrosing signatures. These data could possibly explain the evolution towards a state of disability for some patients.


Assuntos
Sarcoidose , Humanos , Sarcoidose/genética , Sarcoidose/patologia , Granuloma , Citocinas/metabolismo , Músculo Esquelético/metabolismo , Perfilação da Expressão Gênica
2.
Elife ; 122023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37227756

RESUMO

Promyelocytic leukemia Nuclear Bodies (PML NBs) are nuclear membrane-less organelles physically associated with chromatin underscoring their crucial role in genome function. The H3.3 histone chaperone complex HIRA accumulates in PML NBs upon senescence, viral infection or IFN-I treatment in primary cells. Yet, the molecular mechanisms of this partitioning and its function in regulating histone dynamics have remained elusive. By using specific approaches, we identify intermolecular SUMO-SIM interactions as an essential mechanism for HIRA recruitment in PML NBs. Hence, we describe a role of PML NBs as nuclear depot centers to regulate HIRA distribution in the nucleus, dependent both on SP100 and DAXX/H3.3 levels. Upon IFN-I stimulation, PML is required for interferon-stimulated genes (ISGs) transcription and PML NBs become juxtaposed to ISGs loci at late time points of IFN-I treatment. HIRA and PML are necessary for the prolonged H3.3 deposition at the transcriptional end sites of ISGs, well beyond the peak of transcription. Though, HIRA accumulation in PML NBs is dispensable for H3.3 deposition on ISGs. We thus uncover a dual function for PML/PML NBs, as buffering centers modulating the nuclear distribution of HIRA, and as chromosomal hubs regulating ISGs transcription and thus HIRA-mediated H3.3 deposition at ISGs upon inflammatory response.


Assuntos
Interferon Tipo I , Corpos Nucleares da Leucemia Promielocítica , Humanos , Camundongos , Cromatina , Histonas/genética , Interferon Tipo I/genética , Fatores de Transcrição/metabolismo , Animais
4.
Cell Mol Life Sci ; 80(2): 47, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36658409

RESUMO

Histone H3 trimethylation on lysine 9 (H3K9me3) is a defining feature of mammalian pericentromeres, loss of which results in genome instability. Here we show that CDYL2 is recruited to pericentromeres in an H3K9me3-dependent manner and is required for faithful mitosis and genome stability. CDYL2 RNAi in MCF-7 breast cancer cells and Hela cervical cancer cells inhibited their growth, induced apoptosis, and provoked both nuclear and mitotic aberrations. Mass spectrometry analysis of CDYL2-interacting proteins identified the neurodevelopmental disease-linked mitotic regulators CHAMP1 and POGZ, which are associated with a central non-conserved region of CDYL2. RNAi rescue assays identified both the CDYL2 chromodomain and the CHAMP1-POGZ interacting region as required and, together, sufficient for CDYL2 regulation of mitosis and genome stability. CDYL2 RNAi caused loss of CHAMP1 localization at pericentromeres. We propose that CDYL2 functions as an adaptor protein that connects pericentromeric H3K9me3 with CHAMP1 and POGZ to ensure mitotic fidelity and genome stability.


Assuntos
Proteínas Cromossômicas não Histona , Proteínas Correpressoras , Histonas , Mitose , Humanos , Proteínas Cromossômicas não Histona/metabolismo , Instabilidade Genômica , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Mitose/genética , Fosfoproteínas/metabolismo , Interferência de RNA , Células MCF-7 , Proteínas Correpressoras/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo
5.
Brain ; 146(8): 3470-3483, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36454683

RESUMO

Distal hereditary motor neuropathy represents a group of motor inherited neuropathies leading to distal weakness. We report a family of two brothers and a sister affected by distal hereditary motor neuropathy in whom a homozygous variant c.3G>T (p.1Met?) was identified in the COQ7 gene. This gene encodes a protein required for coenzyme Q10 biosynthesis, a component of the respiratory chain in mitochondria. Mutations of COQ7 were previously associated with severe multi-organ disorders characterized by early childhood onset and developmental delay. Using patient blood samples and fibroblasts derived from a skin biopsy, we investigated the pathogenicity of the variant of unknown significance c.3G>T (p.1Met?) in the COQ7 gene and the effect of coenzyme Q10 supplementation in vitro. We showed that this variation leads to a severe decrease in COQ7 protein levels in the patient's fibroblasts, resulting in a decrease in coenzyme Q10 production and in the accumulation of 6-demethoxycoenzyme Q10, the COQ7 substrate. Interestingly, such accumulation was also found in the patient's plasma. Normal coenzyme Q10 and 6-demethoxycoenzyme Q10 levels were restored in vitro by using the coenzyme Q10 precursor 2,4-dihydroxybenzoic acid, thus bypassing the COQ7 requirement. Coenzyme Q10 biosynthesis deficiency is known to impair the mitochondrial respiratory chain. Seahorse experiments showed that the patient's cells mainly rely on glycolysis to maintain sufficient ATP production. Consistently, the replacement of glucose by galactose in the culture medium of these cells reduced their proliferation rate. Interestingly, normal proliferation was restored by coenzyme Q10 supplementation of the culture medium, suggesting a therapeutic avenue for these patients. Altogether, we have identified the first example of recessive distal hereditary motor neuropathy caused by a homozygous variation in the COQ7 gene, which should thus be included in the gene panels used to diagnose peripheral inherited neuropathies. Furthermore, 6-demethoxycoenzyme Q10 accumulation in the blood can be used to confirm the pathogenic nature of the mutation. Finally, supplementation with coenzyme Q10 or derivatives should be considered to prevent the progression of COQ7-related peripheral inherited neuropathy in diagnosed patients.


Assuntos
Doenças Mitocondriais , Ubiquinona , Masculino , Humanos , Pré-Escolar , Ubiquinona/uso terapêutico , Mutação/genética , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/genética , Ataxia/genética
6.
Artigo em Inglês | MEDLINE | ID: mdl-36522170

RESUMO

OBJECTIVES: Rippling muscle disease (RMD) is characterized by muscle stiffness, muscle hypertrophy, and rippling muscle induced by stretching or percussion. Hereditary RMD is due to sequence variants in the CAV3 and PTRF/CAVIN1 genes encoding Caveolin-3 or Cavin-1, respectively; a few series of patients with acquired autoimmune forms of RMD (iRMD) associated with AChR antibody-positive myasthenia gravis and/or thymoma have also been described. Recently, MURC/caveolae-associated protein 4 (Cavin-4) autoantibody was identified in 8 of 10 patients without thymoma, highlighting its potential both as a biomarker and as a triggering agent of this pathology. Here, we report the case of a patient with iRMD-AchR antibody negative associated with thymoma. METHODS: We suspected a paraneoplastic origin and investigated the presence of specific autoantibodies targeting muscle antigens through a combination of Western blotting and affinity purification coupled with mass spectrometry-based proteomic approaches. RESULTS: We identified circulating MURC/Cavin-4 autoantibodies and found strong similarities between histologic features of the patient's muscle and those commonly reported in caveolinopathies. Strikingly, MURC/Cavin-4 autoantibody titer strongly decreased after tumor resection and immunotherapy correlating with complete disappearance of the rippling phenotype and full patient remission. DISCUSSION: MURC/Cavin-4 autoantibodies may play a pathogenic role in paraneoplastic iRMD associated with thymoma.


Assuntos
Miastenia Gravis , Timoma , Neoplasias do Timo , Humanos , Timoma/complicações , Autoanticorpos , Proteômica , Miastenia Gravis/complicações , Miastenia Gravis/diagnóstico , Neoplasias do Timo/complicações , Neoplasias do Timo/diagnóstico
7.
Genes (Basel) ; 13(12)2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36553512

RESUMO

X-linked Myopathy with Excessive Autophagy (XMEA) is a rare autophagic vacuolar myopathy caused by mutations in the Vacuolar ATPase assembly factor VMA21 gene; onset usually occurs during childhood and rarely occurs during adulthood. We described a 22-year-old patient with XMEA, whose onset was declared at 11 through gait disorder. He had severe four-limb proximal weakness and amyotrophy, and his proximal muscle MRC score was between 2 and 3/5 in four limbs; creatine kinase levels were elevated (1385 IU/L), and electroneuromyography and muscle MRI were suggestive of myopathy. Muscle biopsy showed abnormalities typical of autophagic vacuolar myopathy. We detected a hemizygous, unreported, intronic, single-nucleotide substitution c.164-20T>A (NM_001017980.4) in intron 2 of the VMA21 gene. Fibroblasts derived from this patient displayed a reduced level of VMA21 transcripts (at 40% of normal) and protein, suggesting a pathogenicity related to an alteration of the splicing efficiency associated with an intron retention. This patient with XMEA displayed a severe phenotype (rapid weakness of upper and lower limbs) due to a new intronic variant of VMA21, related to an alteration in the splicing efficiency associated with intron retention, suggesting that phenotype severity is closely related to the residual expression of the VMA21 protein.


Assuntos
Doenças Musculares , ATPases Vacuolares Próton-Translocadoras , Masculino , Humanos , Íntrons/genética , ATPases Vacuolares Próton-Translocadoras/genética , Doenças Musculares/genética , Doenças Musculares/patologia , Mutação , Debilidade Muscular/genética , Autofagia/genética
8.
Hum Mutat ; 43(12): 1898-1908, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35904125

RESUMO

MORC2 gene encodes a ubiquitously expressed nuclear protein involved in chromatin remodeling, DNA repair, and transcriptional regulation. Heterozygous mutations in MORC2 gene have been associated with a spectrum of disorders affecting the peripheral nervous system such as Charcot-Marie-Tooth (CMT2Z), spinal muscular atrophy-like with or without cerebellar involvement, and a developmental syndrome associated with impaired growth, craniofacial dysmorphism and axonal neuropathy (DIGFAN syndrome). Such variability in clinical manifestations associated with the increasing number of variants of unknown significance detected by next-generation sequencing constitutes a serious diagnostic challenge. Here we report the characterization of an in vitro model to evaluate the pathogenicity of variants of unknown significance based on MORC2 overexpression in a neuroblastoma cell line SH-EP or cortical neurons. Likewise, we show that MORC2 mutants affect survival and trigger apoptosis over time in SH-EP cell line. Furthermore, overexpression in primary cortical neurons increases apoptotic cell death and decreases neurite outgrowth. Altogether, these approaches establish the pathogenicity of two new variants p.Gly444Arg and p.His446Gln in three patients from two families. These new mutations in MORC2 gene are associated with autosomal dominant CMT and with adult late onset proximal motor neuropathy, further increasing the spectrum of clinical manifestations associated with MORC2 mutations.


Assuntos
Artrogripose , Doença de Charcot-Marie-Tooth , Adulto , Humanos , Doença de Charcot-Marie-Tooth/genética , Mutação , Heterozigoto , Montagem e Desmontagem da Cromatina , Fenótipo , Fatores de Transcrição/genética
9.
J Cachexia Sarcopenia Muscle ; 13(3): 1686-1703, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35277933

RESUMO

BACKGROUND: Cancer patients at advanced stages experience a severe depletion of skeletal muscle compartment together with a decrease in muscle function, known as cancer cachexia. Cachexia contributes to reducing quality of life, treatment efficiency, and lifespan of cancer patients. However, the systemic nature of the syndrome is poorly documented. Here, we hypothesize that glucocorticoids would be important systemic mediators of cancer cachexia. METHODS: To explore the role of glucocorticoids during cancer cachexia, biomolecular analyses were performed on several tissues (adrenal glands, blood, hypothalamus, liver, and skeletal muscle) collected from ApcMin/+ male mice, a mouse model of intestine and colon cancer, aged of 13 and 23 weeks, and compared with wild type age-matched C57BL/6J littermates. RESULTS: Twenty-three-week-old Apc mice recapitulated important features of cancer cachexia including body weight loss (-16%, P < 0.0001), muscle atrophy (gastrocnemius muscle: -53%, P < 0.0001), and weakness (-50% in tibialis anterior muscle force, P < 0.0001), increased expression of atrogens (7-fold increase in MuRF1 transcript level, P < 0.0001) and down-regulation of Akt-mTOR pathway (3.3-fold increase in 4EBP1 protein content, P < 0.0001), together with a marked transcriptional rewiring of hepatic metabolism toward an increased expression of gluconeogenic genes (Pcx: +90%, Pck1: +85%), and decreased expression of glycolytic (Slc2a2: -40%, Gk: -30%, Pklr: -60%), ketogenic (Hmgcs2: -55%, Bdh1: -80%), lipolytic/fatty oxidation (Lipe: -50%, Mgll: -60%, Cpt2: -60%, Hadh: -30%), and lipogenic (Acly: -30%, Acacb: -70%, Fasn: -45%) genes. The hypothalamic pituitary-adrenal axis was activated, as evidenced by the increase in the transcript levels of genes encoding corticotropin-releasing hormone in the hypothalamus (2-fold increase, P < 0.01), adrenocorticotropic hormone receptor (3.4-fold increase, P < 0.001), and steroid biosynthesis enzymes (Cyp21a1, P < 0.0001, and Cyp11b1, P < 0.01) in the adrenal glands, as well as by the increase in corticosterone level in the serum (+73%, P < 0.05), skeletal muscle (+17%, P < 0.001), and liver (+24%, P < 0.05) of cachectic 23-week-old Apc mice. A comparative transcriptional analysis with dexamethasone-treated C57BL/6J mice indicated that the activation of the hypothalamic-pituitary-adrenal axis in 23-week-old ApcMin/+ mice was significantly associated with the transcription of glucocorticoid-responsive genes in skeletal muscle (P < 0.05) and liver (P < 0.001). The transcriptional regulation of glucocorticoid-responsive genes was also observed in the gastrocnemius muscle of Lewis lung carcinoma tumour-bearing mice and in KPC mice (tibialis anterior muscle and liver). CONCLUSIONS: These findings highlight the role of the hypothalamic-pituitary-adrenal-glucocorticoid pathway in the transcriptional regulation of skeletal muscle catabolism and hepatic metabolism during cancer cachexia. They also provide the paradigm for the design of new therapeutic strategies.


Assuntos
Carcinoma Pulmonar de Lewis , Sistema Hipófise-Suprarrenal , Idoso , Animais , Caquexia/genética , Caquexia/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Expressão Gênica , Glucocorticoides , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/patologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipófise-Suprarrenal/patologia , Qualidade de Vida
10.
Med Sci (Paris) ; 38 Hors série n° 1: 6-12, 2022 Dec.
Artigo em Francês | MEDLINE | ID: mdl-36649628

RESUMO

The cytoplasmic histone deacetylase 6 (HDAC6) is defined today as a new key player in the treatment of many diseases. Overexpression of HDAC6 was observed in a variety of diseases. Over the past ten years, plenty of new selective inhibitors of HDAC6 activity have been synthesized and characterized. Many studies have shown the high efficiency and beneficial effects of HDAC6 inhibitors in many diseases such as cancers, neurodegenerative, inflammatory, or neuromuscular diseases. The mechanisms of HDAC6 action that explain the benefit of its inhibition in various pathologies are still unknown. We have recently shown that HDAC6, via the regulation of the microtubule network, plays a role at the level of neuromuscular junctions by controlling acetylcholine receptor delivery.


Title: HDAC6, une désacétylase très spécifique porteuse d'espoir thérapeutique. Abstract: L'histone désacétylase 6 (HDAC6) est envisagée aujourd'hui comme une cible thérapeutique de choix dans le traitement de nombreuses maladies. L'expression de HDAC6 est fortement augmentée dans un ensemble varié de maladies. Depuis une dizaine d'années, une pléiade de nouveaux inhibiteurs sélectifs de l'activité de HDAC6 ont été synthétisés et caractérisés. De nombreuses études ont démontré l'efficacité et les effets bénéfiques des inhibiteurs de HDAC6 dans différents cancers, maladies neurodégénératives ou inflammatoires, ainsi que dans diverses maladies neuromusculaires. Tous les mécanismes d'actions de HDAC6 expliquant l'effet de son inhibition dans les pathologies ne sont pas encore connus. Nous avons récemment montré que HDAC6, via la régulation du réseau de microtubules, joue un rôle au niveau des jonctions neuromusculaires en contrôlant l'acheminement des récepteurs de l'acétylcholine.


Assuntos
Inibidores de Histona Desacetilases , Neoplasias , Humanos , Desacetilase 6 de Histona/genética , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Microtúbulos
11.
Cell Mol Life Sci ; 76(13): 2615-2632, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30863908

RESUMO

The Tar DNA-Binding Protein 43 (TDP-43) and its phosphorylated isoform (pTDP-43) are the major components associated with ubiquitin positive/Tau-negative inclusions found in neurons and glial cells of patients suffering of amyotrophic lateral sclerosis (ALS) or frontotemporal lobar degeneration-TDP-43 (FTLD-TDP). Many studies have revealed that TDP-43 is also in the protein inclusions associated with neurodegenerative conditions other than ALS and FTLD-TDP, thus suggesting that this protein may be involved in the pathogenesis of a variety of neurological disorders. In brains of Huntington-affected patients, pTDP-43 aggregates were shown to co-localize with mutant Huntingtin (mHtt) inclusions. Here, we show that expression of mHtt carrying 80-97 polyglutamines repeats in human cell cultures induces the aggregation and the phosphorylation of endogenous TDP-43, whereas non-pathological Htt with 25 polyglutamines repeats has no effect. Mutant Htt aggregation precedes accumulation of pTDP-43 and pTDP-43 co-localizes with mHtt inclusions reminding what it was previously described in brains of Huntington-affected patients. Detergent-insoluble fractions from cells expressing mHtt and containing mHtt-pTDP-43 co-aggregates can function as seeds for further TDP-43 aggregation in human cell culture. The human cellular prion protein PrPC was previously identified as a negative modulator of mHtt aggregation; here, we show that PrPC-mediated reduction of mHtt aggregation is tightly correlated with a decrease of TDP-43 aggregation and phosphorylation, thus confirming the close relationships between TDP-43 and mHtt.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteína Huntingtina/metabolismo , Mutação , Neuroblastoma/patologia , Peptídeos/metabolismo , Proteínas Priônicas/metabolismo , Agregados Proteicos , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Humanos , Proteína Huntingtina/genética , Corpos de Inclusão , Neuroblastoma/genética , Neuroblastoma/metabolismo , Fosforilação , Proteínas Priônicas/genética , Células Tumorais Cultivadas
12.
Nat Commun ; 10(1): 45, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30604748

RESUMO

Programmable nucleases have enabled rapid and accessible genome engineering in eukaryotic cells and living organisms. However, their delivery into target cells can be technically challenging when working with primary cells or in vivo. Here, we use engineered murine leukemia virus-like particles loaded with Cas9-sgRNA ribonucleoproteins (Nanoblades) to induce efficient genome-editing in cell lines and primary cells including human induced pluripotent stem cells, human hematopoietic stem cells and mouse bone-marrow cells. Transgene-free Nanoblades are also capable of in vivo genome-editing in mouse embryos and in the liver of injected mice. Nanoblades can be complexed with donor DNA for "all-in-one" homology-directed repair or programmed with modified Cas9 variants to mediate transcriptional up-regulation of target genes. Nanoblades preparation process is simple, relatively inexpensive and can be easily implemented in any laboratory equipped for cellular biology.


Assuntos
Proteína 9 Associada à CRISPR/genética , Edição de Genes/métodos , Vetores Genéticos/genética , RNA Guia de Cinetoplastídeos/genética , Ribonucleoproteínas/genética , Animais , Linhagem Celular Tumoral , Reparo do DNA/genética , Embrião de Mamíferos , Fibroblastos , Edição de Genes/economia , Genoma/genética , Células HEK293 , Células-Tronco Hematopoéticas , Humanos , Células-Tronco Pluripotentes Induzidas , Vírus da Leucemia Murina/genética , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Cultura Primária de Células , Ativação Transcricional/genética
13.
J Cachexia Sarcopenia Muscle ; 10(1): 35-53, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30461220

RESUMO

BACKGROUND: The protein kinase mechanistic target of rapamycin (mTOR) controls cellular growth and metabolism. Although balanced mTOR signalling is required for proper muscle homeostasis, partial mTOR inhibition by rapamycin has beneficial effects on various muscle disorders and age-related pathologies. Besides, more potent mTOR inhibitors targeting mTOR catalytic activity have been developed and are in clinical trials. However, the physiological impact of loss of mTOR catalytic activity in skeletal muscle is currently unknown. METHODS: We have generated the mTORmKOKI mouse model in which conditional loss of mTOR is concomitant with expression of kinase inactive mTOR in skeletal muscle. We performed a comparative phenotypic and biochemical analysis of mTORmKOKI mutant animals with muscle-specific mTOR knockout (mTORmKO) littermates. RESULTS: In striking contrast with mTORmKO littermates, mTORmKOKI mice developed an early onset rapidly progressive myopathy causing juvenile lethality. More than 50% mTORmKOKI mice died before 8 weeks of age, and none survived more than 12 weeks, while mTORmKO mice died around 7 months of age. The growth rate of mTORmKOKI mice declined beyond 1 week of age, and the animals showed profound alterations in body composition at 4 weeks of age. At this age, their body weight was 64% that of mTORmKO mice (P < 0.001) due to significant reduction in lean and fat mass. The mass of isolated muscles from mTORmKOKI mice was remarkably decreased by 38-56% (P < 0.001) as compared with that from mTORmKO mice. Histopathological analysis further revealed exacerbated dystrophic features and metabolic alterations in both slow/oxidative and fast/glycolytic muscles from mTORmKOKI mice. We show that the severity of the mTORmKOKI as compared with the mild mTORmKO phenotype is due to more robust suppression of muscle mTORC1 signalling leading to stronger alterations in protein synthesis, oxidative metabolism, and autophagy. This was accompanied with stronger feedback activation of PKB/Akt and dramatic down-regulation of glycogen phosphorylase expression (0.16-fold in tibialis anterior muscle, P < 0.01), thus causing features of glycogen storage disease type V. CONCLUSIONS: Our study demonstrates a critical role for muscle mTOR catalytic activity in the regulation of whole-body growth and homeostasis. We suggest that skeletal muscle targeting with mTOR catalytic inhibitors may have detrimental effects. The mTORmKOKI mutant mouse provides an animal model for the pathophysiological understanding of muscle mTOR activity inhibition as well as for mechanistic investigation of the influence of skeletal muscle perturbations on whole-body homeostasis.


Assuntos
Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/genética , Serina-Treonina Quinases TOR/genética , Animais , Modelos Animais de Doenças , Homeostase , Humanos , Masculino , Camundongos Transgênicos , Doenças Musculares/metabolismo
14.
Brain Behav Immun ; 74: 277-290, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30244035

RESUMO

Epigenetic modifications of DNA and histone proteins are emerging as fundamental mechanisms by which neural cells adapt their transcriptional response to environmental cues, such as, immune stimuli or stress. In particular, histone H3 phospho(Ser10)-acetylation(Lys14) (H3S10phK14ac) has been linked to activation of specific gene expression. The purpose of this study was to investigate the role of H3S10phK14ac in a neuroinflammatory condition. Adult male rats received a intraperitoneal injection of lipopolysaccharide (LPS) (830 µg/Kg/i.p., n = 6) or vehicle (saline 1 mL/kg/i.p., n = 6) and were sacrificed 2 or 6 h later. We showed marked region- and time-specific increases in H3S10phK14ac in the hypothalamus and hippocampus, two principal target regions of LPS. These changes were accompanied by a marked transcriptional activation of interleukin (IL) 1ß, IL-6, Tumour Necrosis Factor (TNF) α, the inducible nitric oxide synthase (iNOS) and the immediate early gene c-Fos. By means of chromatin immunoprecipitation, we demonstrated an increased region- and time-specific association of H3S10phK14ac with the promoters of IL-6, c-Fos and iNOS genes, suggesting that part of the LPS-induced transcriptional activation of these genes is regulated by H3S10phK14ac. Finally, by means of multiple immunofluorescence approach, we showed that increased H3S10phK14ac is cell type-specific, being neurons and reactive microglia, the principal histological types involved in this response. Present data point to H3S10phK14ac as a principal epigenetic regulator of neural cell response to systemic LPS and underline the importance of distinct time-, region- and cell-specific epigenetic mechanisms that regulate gene transcription to understand the mechanistic complexity of neuroinflammatory response to immune challenges.


Assuntos
Histonas/metabolismo , Neuroimunomodulação/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Epigênese Genética/fisiologia , Expressão Gênica/efeitos dos fármacos , Hipocampo/metabolismo , Hipotálamo/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Microglia/metabolismo , Microglia/fisiologia , Neuroimunomodulação/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Ativação Transcricional/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
15.
J Cachexia Sarcopenia Muscle ; 9(5): 929-946, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29989354

RESUMO

BACKGROUND: Glucocorticoids (GC) play a major role in muscle atrophy. As skeletal muscle is a secretory organ, characterization of the muscle secretome elicited by muscle atrophy should allow to better understand the cellular mechanisms and to identify circulating biomarkers of this condition. Our project aimed to identify the changes in the muscle secretome associated with GC-induced muscle atrophy and susceptible to translate into circulation. METHODS: We have identified the GC-induced changes in the secretome of C2 C12 muscle cells by proteomic analysis, and then, we have determined how these changes translate into the circulation of mice or human subjects exposed to high concentrations of GC. RESULTS: This approach led us to identify Serpina3n as one of the most markedly secreted protein in response to GC. Our original in vitro results were confirmed in vivo by an increased expression of Serpina3n in skeletal muscle (3.9-fold; P < 0.01) and in the serum (two-fold; P < 0.01) of mice treated with GC. We also observed increased levels of the human orthologue Serpina3 in the serum of Cushing's syndrome patients compared with healthy controls matched for age and sex (n = 9/group, 2.5-fold; P < 0.01). An increase of Serpina3n was also demonstrated in muscle atrophy models mediated by GC such as cancer cachexia (four-fold; P < 0.01), sepsis (12.5-fold; P < 0.001), or diabetes (two-fold; P < 0.01). In contrast, levels of Serpina3n both in skeletal muscle and in the circulation were reduced in several models of muscle hypertrophy induced by myostatin inhibition (P < 0.01). Furthermore, a cluster of data suggests that the regulation of muscle Serpina3n involves mTOR, an essential determinant of the muscle cell size. CONCLUSIONS: Taken together, these data suggest that Serpina3n may represent a circulating biomarker of muscle atrophy associated to GC and, broadly, a reflection of dynamic changes in muscle mass.


Assuntos
Glucocorticoides/efeitos adversos , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Serpinas/metabolismo , Animais , Estudos de Casos e Controles , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cromatografia Líquida , Síndrome de Cushing/complicações , Dexametasona/efeitos adversos , Modelos Animais de Doenças , Expressão Gênica , Humanos , Masculino , Camundongos , Atrofia Muscular/patologia , Mioblastos , Proteoma , Proteômica/métodos , Serpinas/sangue , Espectrometria de Massas em Tandem
16.
Acta Neuropathol Commun ; 5(1): 55, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28709447

RESUMO

Neurofilament heavy chain (NEFH) gene was recently identified to cause autosomal dominant axonal Charcot-Marie-Tooth disease (CMT2cc). However, the clinical spectrum of this condition and the physio-pathological pathway remain to be delineated. We report 12 patients from two French families with axonal dominantly inherited form of CMT caused by two new mutations in the NEFH gene. A remarkable feature was the early involvement of proximal muscles of the lower limbs associated with pyramidal signs in some patients. Nerve conduction velocity studies indicated a predominantly motor axonal neuropathy. Unique deletions of two nucleotides causing frameshifts near the end of the NEFH coding sequence were identified: in family 1, c.3008_3009del (p.Lys1003Argfs*59), and in family 2 c.3043_3044del (p.Lys1015Glyfs*47). Both frameshifts lead to 40 additional amino acids translation encoding a cryptic amyloidogenic element. Consistently, we show that these mutations cause protein aggregation which are recognised by the autophagic pathway in motoneurons and triggered caspase 3 activation leading to apoptosis in neuroblastoma cells. Using electroporation of chick embryo spinal cord, we confirm that NEFH mutants form aggregates in vivo and trigger apoptosis of spinal cord neurons. Thus, our results provide a physiological explanation for the overlap between CMT and amyotrophic lateral sclerosis (ALS) clinical features in affected patients.


Assuntos
Apoptose/fisiologia , Doença de Charcot-Marie-Tooth/metabolismo , Proteínas de Neurofilamentos/metabolismo , Neurônios/metabolismo , Agregação Patológica de Proteínas/metabolismo , Adulto , Idoso , Animais , Linhagem Celular Tumoral , Doença de Charcot-Marie-Tooth/genética , Embrião de Galinha , Família , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação , Proteínas de Neurofilamentos/genética , Medula Espinal/metabolismo , Medula Espinal/patologia , Adulto Jovem
17.
PLoS Pathog ; 12(9): e1005834, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27618691

RESUMO

Herpes simplex virus 1 (HSV-1) establishes latency in trigeminal ganglia (TG) sensory neurons of infected individuals. The commitment of infected neurons toward the viral lytic or latent transcriptional program is likely to depend on both viral and cellular factors, and to differ among individual neurons. In this study, we used a mouse model of HSV-1 infection to investigate the relationship between viral genomes and the nuclear environment in terms of the establishment of latency. During acute infection, viral genomes show two major patterns: replication compartments or multiple spots distributed in the nucleoplasm (namely "multiple-acute"). Viral genomes in the "multiple-acute" pattern are systematically associated with the promyelocytic leukemia (PML) protein in structures designated viral DNA-containing PML nuclear bodies (vDCP-NBs). To investigate the viral and cellular features that favor the acquisition of the latency-associated viral genome patterns, we infected mouse primary TG neurons from wild type (wt) mice or knock-out mice for type 1 interferon (IFN) receptor with wt or a mutant HSV-1, which is unable to replicate due to the synthesis of a non-functional ICP4, the major virus transactivator. We found that the inability of the virus to initiate the lytic program combined to its inability to synthesize a functional ICP0, are the two viral features leading to the formation of vDCP-NBs. The formation of the "multiple-latency" pattern is favored by the type 1 IFN signaling pathway in the context of neurons infected by a virus able to replicate through the expression of a functional ICP4 but unable to express functional VP16 and ICP0. Analyses of TGs harvested from HSV-1 latently infected humans showed that viral genomes and PML occupy similar nuclear areas in infected neurons, eventually forming vDCP-NB-like structures. Overall our study designates PML protein and PML-NBs to be major cellular components involved in the control of HSV-1 latency, probably during the entire life of an individual.


Assuntos
Genoma Viral/genética , Herpes Simples/virologia , Herpesvirus Humano 1/genética , Proteína da Leucemia Promielocítica/metabolismo , Latência Viral/genética , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Feminino , Herpesvirus Humano 1/fisiologia , Humanos , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Mutação , Proteína da Leucemia Promielocítica/genética , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Transdução de Sinais , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Gânglio Trigeminal/virologia
18.
J Mol Cell Cardiol ; 97: 213-25, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27133769

RESUMO

Mechanistic target of rapamycin (mTOR) is a central regulator of cell growth, proliferation, survival and metabolism, as part of mTOR complex 1 (mTORC1) and mTORC2. While partial inhibition of mTORC1 using rapamycin was shown to be cardioprotective, genetic studies in mouse models revealed that mTOR is essential for embryonic heart development and cardiac function in adults. However, the physiological role of mTOR during postnatal cardiac maturation is not fully elucidated. We have therefore generated a mouse model in which cardiac mTOR was inactivated at an early postnatal stage. Mutant mTORcmKO mice rapidly developed a dilated cardiomyopathy associated with cardiomyocyte growth defects, apoptosis and fibrosis, and died during their third week. Here, we show that reduced cardiomyocyte growth results from impaired protein translation efficiency through both 4E-BP1-dependent and -independent mechanisms. In addition, infant mTORcmKO hearts displayed markedly increased apoptosis linked to stretch-induced ANKRD1 (Ankyrin repeat-domain containing protein 1) up-regulation, JNK kinase activation and p53 accumulation. Pharmacological inhibition of p53 with pifithrin-α attenuated caspase-3 activation. Cardiomyocyte death did not result from activation of the MST1/Hippo pro-apoptotic pathway as reported in adult rictor/mTORC2 KO hearts. As well, mTORcmKO hearts showed a strong downregulation of myoglobin content, thereby leading to a hypoxic environment. Nevertheless, they lacked a HIF1α-mediated adaptive response, as mTOR is required for hypoxia-induced HIF-1α activation. Altogether, our results demonstrate that mTOR is critically required for cardiomyocyte growth, viability and oxygen supply in early postnatal myocardium and provide insight into the molecular mechanisms involved in apoptosis of mTOR-depleted cardiomyocytes.


Assuntos
Apoptose/genética , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Biossíntese de Proteínas , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/genética , Animais , Biomarcadores , Biópsia , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/fisiopatologia , Ponte Cardiopulmonar , Modelos Animais de Doenças , Ecocardiografia , Metabolismo Energético/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Testes de Função Cardíaca , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Camundongos Knockout , Proteínas Musculares/metabolismo , Mioglobina/metabolismo , Proteínas Nucleares/metabolismo , Proteólise , Proteínas Repressoras/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Proteína Supressora de Tumor p53/metabolismo
19.
Cell Mol Life Sci ; 72(22): 4409-27, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26047659

RESUMO

Exosomes are secreted membrane vesicles of endosomal origin present in biological fluids. Exosomes may serve as shuttles for amyloidogenic proteins, notably infectious prions, and may participate in their spreading in vivo. To explore the significance of the exosome pathway on prion infectivity and release, we investigated the role of the endosomal sorting complex required for transport (ESCRT) machinery and the need for ceramide, both involved in exosome biogenesis. Silencing of HRS-ESCRT-0 subunit drastically impairs the formation of cellular infectious prion due to an altered trafficking of cholesterol. Depletion of Tsg101-ESCRT-I subunit or impairment of the production of ceramide significantly strongly decreases infectious prion release. Together, our data reveal that ESCRT-dependent and -independent pathways can concomitantly regulate the exosomal secretion of infectious prion, showing that both pathways operate for the exosomal trafficking of a particular cargo. These data open up a new avenue to regulate prion release and propagation.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Exossomos/genética , Príons/genética , Transdução de Sinais/genética , Compostos de Anilina/farmacologia , Animais , Compostos de Benzilideno/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Ceramidas/metabolismo , Proteínas de Ligação a DNA/genética , Exossomos/metabolismo , Exossomos/ultraestrutura , Humanos , Immunoblotting , Camundongos Transgênicos , Microscopia Confocal , Microscopia Eletrônica , Príons/metabolismo , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Interferência de RNA , Coelhos , Ovinos , Fatores de Transcrição/genética
20.
J Neurosci ; 35(12): 4926-41, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25810523

RESUMO

The muscle-specific kinase MuSK is one of the key molecules orchestrating neuromuscular junction (NMJ) formation. MuSK interacts with the Wnt morphogens, through its Frizzled-like domain (cysteine-rich domain [CRD]). Dysfunction of MuSK CRD in patients has been recently associated with the onset of myasthenia, common neuromuscular disorders mainly characterized by fatigable muscle weakness. However, the physiological role of Wnt-MuSK interaction in NMJ formation and function remains to be elucidated. Here, we demonstrate that the CRD deletion of MuSK in mice caused profound defects of both muscle prepatterning, the first step of NMJ formation, and synapse differentiation associated with a drastic deficit in AChR clusters and excessive growth of motor axons that bypass AChR clusters. Moreover, adult MuSKΔCRD mice developed signs of congenital myasthenia, including severe NMJs dismantlement, muscle weakness, and fatigability. We also report, for the first time, the beneficial effects of lithium chloride, a reversible inhibitor of the glycogen synthase kinase-3, that rescued NMJ defects in MuSKΔCRD mice and therefore constitutes a novel therapeutic reagent for the treatment of neuromuscular disorders linked to Wnt-MuSK signaling pathway deficiency. Together, our data reveal that MuSK CRD is critical for NMJ formation and plays an unsuspected role in NMJ maintenance in adulthood.


Assuntos
Glicoproteínas/química , Debilidade Muscular/tratamento farmacológico , Junção Neuromuscular/crescimento & desenvolvimento , Junção Neuromuscular/fisiologia , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/fisiologia , Acetilcolinesterase/metabolismo , Animais , Animais Recém-Nascidos , Fadiga/genética , Fadiga/fisiopatologia , Feminino , Força da Mão/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular , Cloreto de Lítio/farmacologia , Cloreto de Lítio/uso terapêutico , Masculino , Camundongos , Camundongos Transgênicos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/fisiologia , Debilidade Muscular/genética , Debilidade Muscular/fisiopatologia , Mutação , Síndromes Miastênicas Congênitas/tratamento farmacológico , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/fisiopatologia , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/ultraestrutura , Gravidez , Cultura Primária de Células , Receptores Proteína Tirosina Quinases/genética , Receptores Colinérgicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA