Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Res Sq ; 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37961365

RESUMO

Brain white matter tracts undergo structural and functional changes linked to late-life cognitive decline, but the cellular and molecular contributions to their selective vulnerability are not well defined. In naturally aged mice, we demonstrate that senescent and disease-associated microglia (DAM) phenotypes converge in hippocampus-adjacent white matter. Through gold-standard gene expression and immunolabeling combined with high-dimensional spatial mapping, we identified microglial cell fates in aged white matter characterized by aberrant morphology, microenvironment reorganization, and expression of senescence and DAM markers, including galectin 3 (GAL3/Lgals3), B-cell lymphoma 2 (Bcl2), and cyclin dependent kinase inhibitors, including Cdkn2a/p16ink4a. Pharmacogenetic or pharmacological targeting of p16ink4a or BCL2 reduced white matter GAL3+ DAM abundance and rejuvenated microglial fimbria organization. Our results demonstrate dynamic changes in microglial identity in aged white matter that can be reverted by senotherapeutic intervention to promote homeostatic maintenance in the aged brain.

2.
NPJ Precis Oncol ; 7(1): 126, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030881

RESUMO

High-grade gliomas are primary brain tumors that are incredibly refractory long-term to surgery and chemoradiation, with no proven durable salvage therapies for patients that have failed conventional treatments. Post-treatment, the latent glioma and its microenvironment are characterized by a senescent-like state of mitotic arrest and a senescence-associated secretory phenotype (SASP) induced by prior chemoradiation. Although senescence was once thought to be irreversible, recent evidence has demonstrated that cells may escape this state and re-enter the cell cycle, contributing to tumor recurrence. Moreover, senescent tumor cells could spur the growth of their non-senescent counterparts, thereby accelerating recurrence. In this review, we highlight emerging evidence supporting the use of senolytic agents to ablate latent, senescent-like cells that could contribute to tumor recurrence. We also discuss how senescent cell clearance can decrease the SASP within the tumor microenvironment thereby reducing tumor aggressiveness at recurrence. Finally, senolytics could improve the long-term sequelae of prior therapy on cognition and bone marrow function. We critically review the senolytic drugs currently under preclinical and clinical investigation and the potential challenges that may be associated with deploying senolytics against latent glioma. In conclusion, senescence in glioma and the microenvironment are critical and potential targets for delaying or preventing tumor recurrence and improving patient functional outcomes through senotherapeutics.

3.
Front Aging ; 3: 993658, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36276605

RESUMO

Surgical parabiosis enables sharing of the circulating milieu between two organisms. This powerful model presents diverse complications based on age, strain, sex, and other experimental parameters. Here, we provide an optimized parabiosis protocol for the surgical union of two mice internally at the elbow and knee joints with continuous external joining of the skin. This protocol incorporates guidance and solutions to complications that can occur, particularly in aging studies, including non-cohesive pairing, variable anesthesia sensitivity, external and internal dehiscence, dehydration, and weight loss. We also offer a straightforward method for validating postoperative blood chimerism and confirming its time course using flow cytometry. Utilization of our optimized protocol can facilitate reproducible parabiosis experimentation to dynamically explore mechanisms of aging and rejuvenation.

4.
Am J Physiol Lung Cell Mol Physiol ; 323(6): L685-L697, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36223640

RESUMO

Cellular senescence is emerging as a driver of idiopathic pulmonary fibrosis (IPF), a progressive and fatal disease with limited effective therapies. The senescence-associated secretory phenotype (SASP), involving the release of inflammatory cytokines and profibrotic growth factors by senescent cells, is thought to be a product of multiple cell types in IPF, including lung fibroblasts. NF-κB is a master regulator of the SASP, and its activity depends on the phosphorylation of p65/RelA. The purpose of this study was to assess the role of Pim-1 kinase as a driver of NF-κB-induced production of inflammatory cytokines from low-passage IPF fibroblast cultures displaying markers of senescence. Our results demonstrate that Pim-1 kinase phosphorylates p65/RelA, activating NF-κB activity and enhancing IL-6 production, which in turn amplifies the expression of PIM1, generating a positive feedback loop. In addition, targeting Pim-1 kinase with a small molecule inhibitor dramatically inhibited the expression of a broad array of cytokines and chemokines in IPF-derived fibroblasts. Furthermore, we provide evidence that Pim-1 overexpression in low-passage human lung fibroblasts is sufficient to drive premature senescence, in vitro. These findings highlight the therapeutic potential of targeting Pim-1 kinase to reprogram the secretome of senescent fibroblasts and halt IPF progression.


Assuntos
Fibrose Pulmonar Idiopática , Pneumonia , Humanos , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/farmacologia , NF-kappa B/metabolismo , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Senescência Celular , Pulmão/metabolismo , Pneumonia/metabolismo , Citocinas/metabolismo
5.
Nat Commun ; 13(1): 5671, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36167854

RESUMO

Cellular senescence is a plausible mediator of inflammation-related tissue dysfunction. In the aged brain, senescent cell identities and the mechanisms by which they exert adverse influence are unclear. Here we used high-dimensional molecular profiling, coupled with mechanistic experiments, to study the properties of senescent cells in the aged mouse brain. We show that senescence and inflammatory expression profiles increase with age and are brain region- and sex-specific. p16-positive myeloid cells exhibiting senescent and disease-associated activation signatures, including upregulation of chemoattractant factors, accumulate in the aged mouse brain. Senescent brain myeloid cells promote peripheral immune cell chemotaxis in vitro. Activated resident and infiltrating immune cells increase in the aged brain and are partially restored to youthful levels through p16-positive senescent cell clearance in female p16-InkAttac mice, which is associated with preservation of cognitive function. Our study reveals dynamic remodeling of the brain immune cell landscape in aging and suggests senescent cell targeting as a strategy to counter inflammatory changes and cognitive decline.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina , Rejuvenescimento , Envelhecimento , Animais , Encéfalo/metabolismo , Senescência Celular/fisiologia , Fatores Quimiotáticos , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Feminino , Masculino , Camundongos
6.
Nat Aging ; 2(7): 601-615, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36147777

RESUMO

Senescence is a cell fate that contributes to multiple aging-related pathologies. Despite profound age-associated changes in skeletal muscle (SkM), whether its constituent cells are prone to senesce has not been methodically examined. Herein, using single cell and bulk RNA-sequencing and complementary imaging methods on SkM of young and old mice, we demonstrate that a subpopulation of old fibroadipogenic progenitors highly expresses p16 Ink4a together with multiple senescence-related genes and, concomitantly, exhibits DNA damage and chromatin reorganization. Through analysis of isolated myofibers, we also detail a senescence phenotype within a subset of old cells, governed instead by p2 Cip1 . Administration of a senotherapeutic intervention to old mice countered age-related molecular and morphological changes and improved SkM strength. Finally, we found that the senescence phenotype is conserved in SkM from older humans. Collectively, our data provide compelling evidence for cellular senescence as a hallmark and potentially tractable mediator of SkM aging.


Assuntos
Envelhecimento , Senescência Celular , Humanos , Camundongos , Animais , Envelhecimento/genética , Senescência Celular/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Fenótipo , Músculo Esquelético
7.
J Cell Physiol ; 237(4): 2220-2229, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35098542

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with few effective treatment options. We found a highly significant correlation between pregnancy-associated plasma protein (PAPP)-A expression in IPF lung tissue and disease severity as measured by various pulmonary and physical function tests. PAPP-A is a metalloproteinase that enhances local insulin-like growth factor (IGF) activity. We used primary cultures of normal adult human lung fibroblasts (NHLF) to test the hypothesis that PAPP-A plays an important role in the development of pulmonary fibrosis. Treatment of NHLF with pro-fibrotic transforming growth factor (TGF)-ß stimulated marked increases in IGF-I mRNA expression (>20-fold) and measurable IGF-I levels in 72-h conditioned medium (CM). TGF-ß treatment also increased PAPP-A levels in CM fourfold (p = 0.004) and proteolytic activity ~2-fold. There was an indirect effect of TGF-ß to stimulate signaling through the PI3K/Akt pathway, which was significantly inhibited by both IGF-I-inactivating and PAPP-A inhibitory antibodies. Induction of senescence in NHLF increased PAPP-A levels in CM 10-fold (p = 0.006) with attendant increased proteolytic activity. Thus, PAPP-A is a novel component of the senescent lung fibroblast secretome. In addition, NHLF secreted extracellular vehicles (EVs) with surface-bound active PAPP-A that were increased fivefold with senescence. Regulation of PAPP-A and IGF signaling by TGF-ß and cell senescence suggests an interactive cellular mechanism underlying the resistance to apoptosis and the progression of fibrosis in IPF. Furthermore, PAPP-A-associated EVs may be a means of pro-fibrotic, pro-senescent communication with other cells in the lung and, thus, a potential therapeutic target for IPF.


Assuntos
Fibrose Pulmonar Idiopática , Proteína Plasmática A Associada à Gravidez/metabolismo , Adulto , Meios de Cultivo Condicionados/farmacologia , Fibroblastos/metabolismo , Fibrose , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Plasmática A Associada à Gravidez/genética , Proteína Plasmática A Associada à Gravidez/farmacologia , Fator de Crescimento Transformador beta/metabolismo
8.
Aging Cell ; 20(2): e13296, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33470505

RESUMO

Cellular senescence is characterized by an irreversible cell cycle arrest and a pro-inflammatory senescence-associated secretory phenotype (SASP), which is a major contributor to aging and age-related diseases. Clearance of senescent cells has been shown to improve brain function in mouse models of neurodegenerative diseases. However, it is still unknown whether senescent cell clearance alleviates cognitive dysfunction during the aging process. To investigate this, we first conducted single-nuclei and single-cell RNA-seq in the hippocampus from young and aged mice. We observed an age-dependent increase in p16Ink4a senescent cells, which was more pronounced in microglia and oligodendrocyte progenitor cells and characterized by a SASP. We then aged INK-ATTAC mice, in which p16Ink4a -positive senescent cells can be genetically eliminated upon treatment with the drug AP20187 and treated them either with AP20187 or with the senolytic cocktail Dasatinib and Quercetin. We observed that both strategies resulted in a decrease in p16Ink4a exclusively in the microglial population, resulting in reduced microglial activation and reduced expression of SASP factors. Importantly, both approaches significantly improved cognitive function in aged mice. Our data provide proof-of-concept for senolytic interventions' being a potential therapeutic avenue for alleviating age-associated cognitive impairment.


Assuntos
Disfunção Cognitiva/patologia , Encefalite/patologia , Fatores Etários , Animais , Senescência Celular , Disfunção Cognitiva/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Encefalite/metabolismo , Camundongos , Camundongos Transgênicos
9.
Physiol Rep ; 8(16): e14535, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32857481

RESUMO

BACKGROUND: Estrogen may inhibit cell senescence that contributes to age-related disorders. This study determined the effects of menopausal hormone treatments on circulating levels of markers of cell senescence. METHODS: Growth differentiation factor 15 (GDF15), tumor necrosis factor receptor 1 (TNFR1), FAS, and macrophage inflammatory protein 1α (MIP1α) were measured in serum using multiplexed bead-based assays and compared among menopausal women participating in the Kronos Early Estrogen Prevention Study randomized to either placebo (n = 38), oral conjugated equine estrogen (oCEE, n = 37), or transdermal 17ß-estradiol (tE2, n = 34). Serum levels of the senescent markers for each treatment were compared to placebo 36 months after randomization using the Wilcoxon rank sum test. RESULTS: Serum levels of GDF15, TNFR1, and FAS, but not MIP1α, were lower in both the oCEE and tE2 groups compared to placebo. The difference in levels between treatment and placebo for GDF15, TNFR1, and FAS were greater for oCEE [-108 pg/mL (p = .008), -234 pg/mL (p = .0006), and -1374 pg/mL (p < .0001), respectively] than for tE2 [-76 pg/mL (p = .072), -105 pg/mL (p = .076), and -695 pg/mL (p = .036), respectively]. Additionally, TNFR1 showed a positive association with time past menopause (correlation = 0.255, p = .019). CONCLUSIONS: Circulating levels of some markers of cell senescence were lower in menopausal women treated with oCEE and tE2 compared to placebo. Differences in the magnitude of effect of the two active treatments may reflect the differences in circulating levels of estrogen metabolites due to formulation and mode of delivery. These data generate new hypotheses with regard to the effects of menopause on the biology of aging.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/sangue , Envelhecimento/sangue , Terapia de Reposição de Estrogênios/efeitos adversos , Fator 15 de Diferenciação de Crescimento/sangue , Receptores Tipo I de Fatores de Necrose Tumoral/sangue , Receptor fas/sangue , Idoso , Biomarcadores/sangue , Estrogênios/administração & dosagem , Estrogênios/uso terapêutico , Feminino , Humanos , Pessoa de Meia-Idade
10.
JCI Insight ; 5(12)2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32554926

RESUMO

Produced by senescent cells, the senescence-associated secretory phenotype (SASP) is a potential driver of age-related dysfunction. We tested whether circulating concentrations of SASP proteins reflect age and medical risk in humans. We first screened senescent endothelial cells, fibroblasts, preadipocytes, epithelial cells, and myoblasts to identify candidates for human profiling. We then tested associations between circulating SASP proteins and clinical data from individuals throughout the life span and older adults undergoing surgery for prevalent but distinct age-related diseases. A community-based sample of people aged 20-90 years (retrospective cross-sectional) was studied to test associations between circulating SASP factors and chronological age. A subset of this cohort aged 60-90 years and separate cohorts of older adults undergoing surgery for severe aortic stenosis (prospective longitudinal) or ovarian cancer (prospective case-control) were studied to assess relationships between circulating concentrations of SASP proteins and biological age (determined by the accumulation of age-related health deficits) and/or postsurgical outcomes. We showed that SASP proteins were positively associated with age, frailty, and adverse postsurgery outcomes. A panel of 7 SASP factors composed of growth differentiation factor 15 (GDF15), TNF receptor superfamily member 6 (FAS), osteopontin (OPN), TNF receptor 1 (TNFR1), ACTIVIN A, chemokine (C-C motif) ligand 3 (CCL3), and IL-15 predicted adverse events markedly better than a single SASP protein or age. Our findings suggest that the circulating SASP may serve as a clinically useful candidate biomarker of age-related health and a powerful tool for interventional human studies.


Assuntos
Fatores Etários , Senescência Celular/genética , Células Endoteliais/metabolismo , Células Epiteliais/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Fibroblastos/metabolismo , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , Risco , Transdução de Sinais/fisiologia , Adulto Jovem
11.
Aging Cell ; 18(3): e12950, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30907060

RESUMO

Adipose tissue inflammation and dysfunction are associated with obesity-related insulin resistance and diabetes, but mechanisms underlying this relationship are unclear. Although senescent cells accumulate in adipose tissue of obese humans and rodents, a direct pathogenic role for these cells in the development of diabetes remains to be demonstrated. Here, we show that reducing senescent cell burden in obese mice, either by activating drug-inducible "suicide" genes driven by the p16Ink4a promoter or by treatment with senolytic agents, alleviates metabolic and adipose tissue dysfunction. These senolytic interventions improved glucose tolerance, enhanced insulin sensitivity, lowered circulating inflammatory mediators, and promoted adipogenesis in obese mice. Elimination of senescent cells also prevented the migration of transplanted monocytes into intra-abdominal adipose tissue and reduced the number of macrophages in this tissue. In addition, microalbuminuria, renal podocyte function, and cardiac diastolic function improved with senolytic therapy. Our results implicate cellular senescence as a causal factor in obesity-related inflammation and metabolic derangements and show that emerging senolytic agents hold promise for treating obesity-related metabolic dysfunction and its complications.


Assuntos
Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Tecido Adiposo/metabolismo , Senescência Celular/efeitos dos fármacos , Inflamação/metabolismo , Resistência à Insulina/fisiologia , Obesidade/metabolismo , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipogenia/fisiologia , Tecido Adiposo/efeitos dos fármacos , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Morte Celular/fisiologia , Linhagem Celular , Senescência Celular/genética , Senescência Celular/fisiologia , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Dasatinibe/farmacologia , Feminino , Ganciclovir/farmacologia , Glucose/metabolismo , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Quercetina/farmacologia
12.
Geroscience ; 41(1): 1-11, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30729414

RESUMO

Growth differentiation factor 11 (GDF11) is a transforming growth factor ß (TGFß) protein that regulates aspects of central nervous system (CNS) formation and health throughout the lifespan. During development, GDF11 influences CNS patterning and the genesis, differentiation, maturation, and activity of new cells, which may be primarily dependent on local production and action. In the aged brain, exogenous, peripherally delivered GDF11 may enhance neurogenesis and angiogenesis, as well as improve neuropathological outcomes. This is in contrast to a predominantly negative influence on neurogenesis in the developing CNS. Seemingly antithetical effects may correspond to the cell types and mechanisms activated by local versus circulating concentrations of GDF11. Yet undefined, distinct mechanisms of action in young and aged brains may also play a role, which could include differential receptor and binding partner interactions. Exogenously increasing circulating GDF11 concentrations may be a viable approach for improving deleterious aspects of brain aging and neuropathology. Caution is warranted, however, since GDF11 appears to negatively influence muscle health and body composition. Nevertheless, an expanding understanding of GDF11 biology suggests that it is an important regulator of CNS formation and fate, and its manipulation may improve aspects of brain health in older organisms.


Assuntos
Proteínas Morfogenéticas Ósseas/fisiologia , Encéfalo/crescimento & desenvolvimento , Fatores de Diferenciação de Crescimento/fisiologia , Longevidade/fisiologia , Neurogênese , Fator de Crescimento Transformador beta/fisiologia , Animais , Composição Corporal/efeitos dos fármacos , Padronização Corporal/efeitos dos fármacos , Padronização Corporal/fisiologia , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/farmacologia , Encéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Fatores de Diferenciação de Crescimento/genética , Fatores de Diferenciação de Crescimento/farmacologia , Humanos , Desenvolvimento Muscular/efeitos dos fármacos , Desenvolvimento Muscular/fisiologia , Miostatina/genética , Miostatina/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/fisiologia , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Homologia de Sequência de Aminoácidos , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/farmacologia
13.
J Gerontol A Biol Sci Med Sci ; 72(7): 917-921, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28329140

RESUMO

BACKGROUND: Frailty confers risk for surgical morbidity and mortality. Whether patient-reported measures of health, well-being, or quality of life respond differently to surgery in non-frail and frail individuals is unknown. METHODS: Older adults with severe aortic stenosis presenting for surgery were assessed for frailty using Cardiovascular Health Study Criteria. Patient-reported measures of functional capacity (Duke Activity Status Index [DASI]), physical and mental health (Medical Outcomes Study Short Form-Physical and Mental Component Scales [SF-12 PCS and SF-12 MCS, respectively]), well-being (linear analogue self-assessment [LASA]), and quality of life (LASA) were administered before and 3 months after surgery. RESULTS: Of 103 participants (mean age of 80.6 years), 54 were frail. Frail participants had lower baseline DASI, SF-12 PCS, SF-12 MCS, physical well-being, and quality of life scores than non-frail participants. At follow-up, frail participants showed significant improvement in physical function, with DASI and SF-12 PCS scores improving by 50% and 14%, respectively. Non-frail subjects did not significantly improve in these measures. SF-12 MCS scores also improved to a greater extent in frail compared to non-frail participants (3.6 vs < 1 point). Furthermore, the frail participants improved to a greater extent than non-frail participants in physical well-being (21.6 vs 7.1 points) and quality of life measures (25.1 vs 8.7 points). CONCLUSIONS: Frailty is prevalent in older adults with severe aortic stenosis and is associated with poor physical and mental function, physical well-being, and quality of life. In response to surgery, frail participants exhibited greater improvement in these patient-centered outcomes than non-frail peers.


Assuntos
Estenose da Valva Aórtica , Idoso Fragilizado , Implante de Prótese de Valva Cardíaca , Qualidade de Vida , Atividades Cotidianas , Idoso , Idoso de 80 Anos ou mais , Estenose da Valva Aórtica/diagnóstico , Estenose da Valva Aórtica/psicologia , Estenose da Valva Aórtica/cirurgia , Feminino , Avaliação Geriátrica/métodos , Implante de Prótese de Valva Cardíaca/métodos , Implante de Prótese de Valva Cardíaca/psicologia , Humanos , Avaliação de Estado de Karnofsky , Masculino , Medidas de Resultados Relatados pelo Paciente , Índice de Gravidade de Doença
14.
Nat Commun ; 8: 14532, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28230051

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a fatal disease characterized by interstitial remodelling, leading to compromised lung function. Cellular senescence markers are detectable within IPF lung tissue and senescent cell deletion rejuvenates pulmonary health in aged mice. Whether and how senescent cells regulate IPF or if their removal may be an efficacious intervention strategy is unknown. Here we demonstrate elevated abundance of senescence biomarkers in IPF lung, with p16 expression increasing with disease severity. We show that the secretome of senescent fibroblasts, which are selectively killed by a senolytic cocktail, dasatinib plus quercetin (DQ), is fibrogenic. Leveraging the bleomycin-injury IPF model, we demonstrate that early-intervention suicide-gene-mediated senescent cell ablation improves pulmonary function and physical health, although lung fibrosis is visibly unaltered. DQ treatment replicates benefits of transgenic clearance. Thus, our findings establish that fibrotic lung disease is mediated, in part, by senescent cells, which can be targeted to improve health and function.


Assuntos
Senescência Celular , Fibrose Pulmonar Idiopática/patologia , Animais , Biomarcadores/metabolismo , Bleomicina , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Pulmão/patologia , Masculino , Camundongos , Proteoma/metabolismo
15.
Epigenetics ; 12(1): 55-69, 2017 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-27858497

RESUMO

High-fat diet consumption and sedentary lifestyle elevates risk for obesity, non-alcoholic fatty liver disease, and cancer. Exercise training conveys health benefits in populations with or without these chronic conditions. Diet and exercise regulate gene expression by mediating epigenetic mechanisms in many tissues; however, such effects are poorly documented in the liver, a central metabolic organ. To dissect the consequences of diet and exercise on the liver epigenome, we measured DNA methylation, using reduced representation bisulfite sequencing, and transcription, using RNA-seq, in mice maintained on a fast food diet with sedentary lifestyle or exercise, compared with control diet with and without exercise. Our analyses reveal that genome-wide differential DNA methylation and expression of gene clusters are induced by diet and/or exercise. A combination of fast food and exercise triggers extensive gene alterations, with enrichment of carbohydrate/lipid metabolic pathways and muscle developmental processes. Through evaluation of putative protective effects of exercise on diet-induced DNA methylation, we show that hypermethylation is effectively prevented, especially at promoters and enhancers, whereas hypomethylation is only partially attenuated. We assessed diet-induced DNA methylation changes associated with liver cancer-related epigenetic modifications and identified significant increases at liver-specific enhancers in fast food groups, suggesting partial loss of liver cell identity. Hypermethylation at a subset of gene promoters was associated with inhibition of tissue development and promotion of carcinogenic processes. Our study demonstrates extensive reprogramming of the epigenome by diet and exercise, emphasizing the functional relevance of epigenetic mechanisms as an interface between lifestyle modifications and phenotypic alterations.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Metilação de DNA , Dieta Hiperlipídica , Epigênese Genética , Fígado/metabolismo , Condicionamento Físico Animal/fisiologia , Animais , Comportamento Alimentar/fisiologia , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
16.
Ann N Y Acad Sci ; 1386(1): 45-68, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27943360

RESUMO

It has long been known that aging, at both the cellular and organismal levels, contributes to the development and progression of the pathology of many chronic diseases. However, much less research has examined the inverse relationship-the contribution of chronic diseases and their treatments to the progression of aging-related phenotypes. Here, we discuss the impact of three chronic diseases (cancer, HIV/AIDS, and diabetes) and their treatments on aging, putative mechanisms by which these effects are mediated, and the open questions and future research directions required to understand the relationships between these diseases and aging.


Assuntos
Síndrome da Imunodeficiência Adquirida , Envelhecimento , Diabetes Mellitus , Neoplasias , Síndrome da Imunodeficiência Adquirida/genética , Síndrome da Imunodeficiência Adquirida/metabolismo , Síndrome da Imunodeficiência Adquirida/patologia , Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Doença Crônica , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia
17.
Cell Metab ; 23(6): 1207-1215, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27304512

RESUMO

Growth and differentiation factor 11 (GDF11) is a transforming growth factor ß superfamily member with a controversial role in aging processes. We have developed a highly specific LC-MS/MS assay to quantify GDF11, resolved from its homolog, myostatin (MSTN), based on unique amino acid sequence features. Here, we demonstrate that MSTN, but not GDF11, declines in healthy men throughout aging. Neither GDF11 nor MSTN levels differ as a function of age in healthy women. In an independent cohort of older adults with severe aortic stenosis, we show that individuals with higher GDF11 were more likely to be frail and have diabetes or prior cardiac conditions. Following valve replacement surgery, higher GDF11 at surgical baseline was associated with rehospitalization and multiple adverse events. Cumulatively, our results show that GDF11 levels do not decline throughout aging but are associated with comorbidity, frailty, and greater operative risk in older adults with cardiovascular disease.


Assuntos
Envelhecimento/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Doenças Cardiovasculares/metabolismo , Fatores de Diferenciação de Crescimento/metabolismo , Miostatina/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Biomarcadores/sangue , Proteínas Morfogenéticas Ósseas/sangue , Proteínas Morfogenéticas Ósseas/química , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/mortalidade , Cromatografia Líquida , Demografia , Feminino , Fatores de Diferenciação de Crescimento/sangue , Fatores de Diferenciação de Crescimento/química , Humanos , Masculino , Pessoa de Meia-Idade , Miostatina/sangue , Miostatina/química , Fatores de Risco , Espectrometria de Massas em Tandem , Adulto Jovem
18.
Exp Gerontol ; 86: 73-83, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27260561

RESUMO

Several behavioral and pharmacological strategies improve longevity, which is indicative of delayed organismal aging, with the most effective interventions extending both life- and healthspan. In free living creatures, maintaining health and function into old age requires resilience against a multitude of stressors. Conversely, in experimental settings, conventional housing of rodents limits exposure to such challenges, thereby obscuring an accurate assessment of resilience. Caloric restriction (CR) and exercise, as well as pharmacologic strategies (resveratrol, rapamycin, metformin, senolytics), are well established to improve indices of health and aging, but some paradoxical effects have been observed on resilience. For instance, CR potently retards the onset of age-related diseases, and improves lifespan to a greater extent than exercise in a variety of models. However, exercise has proven more consistently beneficial to organismal resilience against a broad array of stressors, including infections, surgery, wound healing and frailty. CR can improve cellular stress defenses and protect from frailty, but also impairs the response to infections, bed rest and healing. How an intervention will impact not only longevity, health and function, but also resiliency, is critical to better understanding translational implications. Thus, organismal robustness represents a critical, albeit understudied aspect of aging, which needs more careful attention in order to better inform on how putative age-delaying strategies will impact preservation of health and function in response to stressors with aging in humans.


Assuntos
Envelhecimento/fisiologia , Restrição Calórica/métodos , Dieta , Ingestão de Energia/fisiologia , Longevidade/fisiologia , Envelhecimento/efeitos dos fármacos , Exercício Físico/fisiologia , Feminino , Humanos , Masculino , Metformina/uso terapêutico , Resveratrol , Sirolimo/uso terapêutico , Estilbenos/uso terapêutico
19.
Diabetes ; 65(6): 1606-15, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26983960

RESUMO

Considerable evidence implicates cellular senescence in the biology of aging and chronic disease. Diet and exercise are determinants of healthy aging; however, the extent to which they affect the behavior and accretion of senescent cells within distinct tissues is not clear. Here we tested the hypothesis that exercise prevents premature senescent cell accumulation and systemic metabolic dysfunction induced by a fast-food diet (FFD). Using transgenic mice that express EGFP in response to activation of the senescence-associated p16(INK4a) promoter, we demonstrate that FFD consumption causes deleterious changes in body weight and composition as well as in measures of physical, cardiac, and metabolic health. The harmful effects of the FFD were associated with dramatic increases in several markers of senescence, including p16, EGFP, senescence-associated ß-galactosidase, and the senescence-associated secretory phenotype (SASP) specifically in visceral adipose tissue. We show that exercise prevents the accumulation of senescent cells and the expression of the SASP while nullifying the damaging effects of the FFD on parameters of health. We also demonstrate that exercise initiated after long-term FFD feeding reduces senescent phenotype markers in visceral adipose tissue while attenuating physical impairments, suggesting that exercise may provide restorative benefit by mitigating accrued senescent burden. These findings highlight a novel mechanism by which exercise mediates its beneficial effects and reinforces the effect of modifiable lifestyle choices on health span.


Assuntos
Tecido Adiposo/citologia , Senescência Celular/fisiologia , Dieta/efeitos adversos , Fast Foods/efeitos adversos , Condicionamento Físico Animal/fisiologia , Envelhecimento/fisiologia , Animais , Composição Corporal , Peso Corporal , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , beta-Galactosidase/metabolismo
20.
Neurobiol Aging ; 36(3): 1293-302, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25556162

RESUMO

Research indicates that female risk of developing Alzheimer's disease (AD) is greater than that of males. Moderate reduction of calorie intake, known as calorie restriction (CR), reduces pathology in AD mouse models and is a potentially translatable prevention measure for individuals at-risk for AD, as well as an important tool for understanding how the brain endogenously attenuates age-related pathology. Whether sex influences the response to CR remains unknown. In this study, we assessed the effect of CR on beta-amyloid peptide (Aß) pathology and hippocampal CA1 neuron specific gene expression in the Tg2576 mouse model of cerebral amyloidosis. Relative to ad libitum (AL) feeding, CR feeding significantly reduced hippocampal Aß burden in 15-month-old female, but not age-matched male, Tg2576 mice. Sustained CR also significantly reduced expression of presenilin enhancer 2 (Psenen) and presenilin 1, components of the γ-secretase complex, in Tg2576 females. These results indicate that long-term CR significantly reduces age-dependent female Tg2576 Aß pathology, which is likely to involve CR-mediated reductions in γ-secretase-dependent amyloid precursor protein (APP) metabolism.


Assuntos
Doença de Alzheimer/etiologia , Doença de Alzheimer/prevenção & controle , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Restrição Calórica , Expressão Gênica , Envelhecimento/genética , Secretases da Proteína Precursora do Amiloide/genética , Peptídeos beta-Amiloides/genética , Animais , Região CA1 Hipocampal/metabolismo , Modelos Animais de Doenças , Feminino , Camundongos Transgênicos , Presenilina-1/genética , Presenilina-1/metabolismo , Risco , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA