Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(10): 5841-5851, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38716877

RESUMO

Therapeutic fluoropyrimidines 5-fluorouracil (5-FU) and 5-fluorocytosine (5-FC) are in long use for treatment of human cancers and severe invasive fungal infections, respectively. 5-Fluorouridine triphosphate represents a bioactive metabolite of both drugs and is incorporated into target cells' RNA. Here we use the model fungus Saccharomyces cerevisiae to define fluorinated tRNA as a key mediator of 5-FU and 5-FC cytotoxicity when specific tRNA methylations are absent. tRNA methylation deficiency caused by loss of Trm4 and Trm8 was previously shown to trigger an RNA quality control mechanism resulting in partial destabilization of hypomodified tRNAValAAC. We demonstrate that, following incorporation into tRNA, fluoropyrimidines strongly enhance degradation of yeast tRNAValAAC lacking Trm4 and Trm8 dependent methylations. At elevated temperature, such effect occurs already in absence of Trm8 alone. Genetic approaches and quantification of tRNA modification levels reveal that enhanced fluoropyrimidine cytotoxicity results from additional, drug induced uridine modification loss and activation of tRNAValAAC decay involving the exonuclease Xrn1. These results suggest that inhibition of tRNA methylation may be exploited to boost therapeutic efficiency of 5-FU and 5-FC.


Assuntos
Flucitosina , Fluoruracila , RNA de Transferência , Saccharomyces cerevisiae , Exorribonucleases/metabolismo , Exorribonucleases/genética , Flucitosina/farmacologia , Fluoruracila/farmacologia , Metilação , Estabilidade de RNA/efeitos dos fármacos , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , tRNA Metiltransferases/metabolismo , tRNA Metiltransferases/genética , Uridina/metabolismo
2.
Biomolecules ; 14(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38672486

RESUMO

The Dph1•Dph2 heterodimer from yeast is a radical SAM (RS) enzyme that generates the 3-amino-3-carboxy-propyl (ACP) precursor for diphthamide, a clinically relevant modification on eukaryotic elongation factor 2 (eEF2). ACP formation requires SAM cleavage and atypical Cys-bound Fe-S clusters in each Dph1 and Dph2 subunit. Intriguingly, the first Cys residue in each motif is found next to another ill-defined cysteine that we show is conserved across eukaryotes. As judged from structural modeling, the orientation of these tandem cysteine motifs (TCMs) suggests a candidate Fe-S cluster ligand role. Hence, we generated, by site-directed DPH1 and DPH2 mutagenesis, Dph1•Dph2 variants with cysteines from each TCM replaced individually or in combination by serines. Assays diagnostic for diphthamide formation in vivo reveal that while single substitutions in the TCM of Dph2 cause mild defects, double mutations almost entirely inactivate the RS enzyme. Based on enhanced Dph1 and Dph2 subunit instability in response to cycloheximide chases, the variants with Cys substitutions in their cofactor motifs are particularly prone to protein degradation. In sum, we identify a fourth functionally cooperative Cys residue within the Fe-S motif of Dph2 and show that the Cys-based cofactor binding motifs in Dph1 and Dph2 are critical for the structural integrity of the dimeric RS enzyme in vivo.


Assuntos
Motivos de Aminoácidos , Cisteína , Histidina/análogos & derivados , Proteínas Repressoras , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Cisteína/metabolismo , Cisteína/genética , Cisteína/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Multimerização Proteica , Liases de Carbono-Enxofre/metabolismo , Liases de Carbono-Enxofre/química , Liases de Carbono-Enxofre/genética , Mutagênese Sítio-Dirigida
3.
Trends Mol Med ; 30(2): 164-177, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38097404

RESUMO

Diphthamide, a complex modification on eukaryotic translation elongation factor 2 (eEF2), assures reading-frame fidelity during translation. Diphthamide and enzymes for its synthesis are conserved in eukaryotes and archaea. Originally identified as target for diphtheria toxin (DT) in humans, its clinical relevance now proves to be broader than the link to pathogenic bacteria. Diphthamide synthesis enzymes (DPH1 and DPH3) are associated with cancer, and DPH gene mutations can cause diphthamide deficiency syndrome (DDS). Finally, new analyses provide evidence that diphthamide may restrict propagation of viruses including SARS-CoV-2 and HIV-1, and that DPH enzymes are targeted by viruses for degradation to overcome this restriction. This review describes how diphthamide is synthesized and functions in translation, and covers its clinical relevance in human development, cancer, and infectious diseases.


Assuntos
Relevância Clínica , Histidina/análogos & derivados , Neoplasias , Humanos , Fator 2 de Elongação de Peptídeos/metabolismo , Toxina Diftérica/metabolismo
4.
Biomolecules ; 13(11)2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-38002337

RESUMO

In eukaryotes, the Dph1•Dph2 dimer is a non-canonical radical SAM enzyme. Using iron-sulfur (FeS) clusters, it cleaves the cosubstrate S-adenosyl-methionine (SAM) to form a 3-amino-3-carboxy-propyl (ACP) radical for the synthesis of diphthamide. The latter decorates a histidine residue on elongation factor 2 (EF2) conserved from archaea to yeast and humans and is important for accurate mRNA translation and protein synthesis. Guided by evidence from archaeal orthologues, we searched for a putative SAM-binding pocket in Dph1•Dph2 from Saccharomyces cerevisiae. We predict an SAM-binding pocket near the FeS cluster domain that is conserved across eukaryotes in Dph1 but not Dph2. Site-directed DPH1 mutagenesis and functional characterization through assay diagnostics for the loss of diphthamide reveal that the SAM pocket is essential for synthesis of the décor on EF2 in vivo. Further evidence from structural modeling suggests particularly critical residues close to the methionine moiety of SAM. Presumably, they facilitate a geometry specific for SAM cleavage and ACP radical formation that distinguishes Dph1•Dph2 from classical radical SAM enzymes, which generate canonical 5'-deoxyadenosyl (dAdo) radicals.


Assuntos
Histidina , Saccharomyces cerevisiae , Humanos , Histidina/química , Fator 2 de Elongação de Peptídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , S-Adenosilmetionina/metabolismo , Mutação , Antígenos de Histocompatibilidade Menor , Proteínas Supressoras de Tumor/metabolismo
5.
Dis Model Mech ; 16(9)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37675463

RESUMO

The autosomal-recessive diphthamide deficiency syndrome presents as intellectual disability with developmental abnormalities, seizures, craniofacial and additional morphological phenotypes. It is caused by reduced activity of proteins that synthesize diphthamide on human translation elongation factor 2. Diphthamide synthesis requires seven proteins (DPH1-DPH7), with clinical deficiency described for DPH1, DPH2 and DPH5. A limited set of variant alleles from syndromic patients has been functionally analyzed, but databases (gnomAD) list additional so far uncharacterized variants in human DPH1 and DPH2. Because DPH enzymes are conserved among eukaryotes, their functionality can be assessed in yeast and mammalian cells. Our experimental assessment of known and uncharacterized DPH1 and DPH2 missense alleles showed that six variants are tolerated despite inter-species conservation. Ten additional human DPH1 (G113R, A114T, H132P, H132R, S136R, C137F, L138P, Y152C, S221P, H240R) and two DPH2 (H105P, C341Y) variants showed reduced functionality and hence are deficiency-susceptibility alleles. Some variants locate close to the active enzyme center and may affect catalysis, while others may impact on enzyme activation. In sum, our study has identified functionally compromised alleles of DPH1 and DPH2 genes that likely cause diphthamide deficiency syndrome.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animais , Humanos , Saccharomyces cerevisiae/genética , Alelos , Histidina , Padrões de Herança , Síndrome , Mamíferos , Proteínas , Antígenos de Histocompatibilidade Menor , Proteínas Supressoras de Tumor , Metiltransferases , Proteínas de Saccharomyces cerevisiae/genética
6.
EMBO J ; 41(20): e111318, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36102610

RESUMO

Post-translational modifications by ubiquitin-like proteins (UBLs) are essential for nearly all cellular processes. Ubiquitin-related modifier 1 (Urm1) is a unique UBL, which plays a key role in tRNA anticodon thiolation as a sulfur carrier protein (SCP) and is linked to the noncanonical E1 enzyme Uba4 (ubiquitin-like protein activator 4). While Urm1 has also been observed to conjugate to target proteins like other UBLs, the molecular mechanism of its attachment remains unknown. Here, we reconstitute the covalent attachment of thiocarboxylated Urm1 to various cellular target proteins in vitro, revealing that, unlike other known UBLs, this process is E2/E3-independent and requires oxidative stress. Furthermore, we present the crystal structures of the peroxiredoxin Ahp1 before and after the covalent attachment of Urm1. Surprisingly, we show that urmylation is accompanied by the transfer of sulfur to cysteine residues in the target proteins, also known as cysteine persulfidation. Our results illustrate the role of the Uba4-Urm1 system as a key evolutionary link between prokaryotic SCPs and the UBL modifications observed in modern eukaryotes.


Assuntos
Ubiquitina , Ubiquitinas , Anticódon , Proteínas de Transporte/metabolismo , Cisteína , Peroxirredoxinas , Enxofre/metabolismo , Ubiquitina/metabolismo , Ubiquitinas/metabolismo
7.
Genet Med ; 24(7): 1567-1582, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35482014

RESUMO

PURPOSE: Diphthamide is a post-translationally modified histidine essential for messenger RNA translation and ribosomal protein synthesis. We present evidence for DPH5 as a novel cause of embryonic lethality and profound neurodevelopmental delays (NDDs). METHODS: Molecular testing was performed using exome or genome sequencing. A targeted Dph5 knockin mouse (C57BL/6Ncrl-Dph5em1Mbp/Mmucd) was created for a DPH5 p.His260Arg homozygous variant identified in 1 family. Adenosine diphosphate-ribosylation assays in DPH5-knockout human and yeast cells and in silico modeling were performed for the identified DPH5 potential pathogenic variants. RESULTS: DPH5 variants p.His260Arg (homozygous), p.Asn110Ser and p.Arg207Ter (heterozygous), and p.Asn174LysfsTer10 (homozygous) were identified in 3 unrelated families with distinct overlapping craniofacial features, profound NDDs, multisystem abnormalities, and miscarriages. Dph5 p.His260Arg homozygous knockin was embryonically lethal with only 1 subviable mouse exhibiting impaired growth, craniofacial dysmorphology, and multisystem dysfunction recapitulating the human phenotype. Adenosine diphosphate-ribosylation assays showed absent to decreased function in DPH5-knockout human and yeast cells. In silico modeling of the variants showed altered DPH5 structure and disruption of its interaction with eEF2. CONCLUSION: We provide strong clinical, biochemical, and functional evidence for DPH5 as a novel cause of embryonic lethality or profound NDDs with multisystem involvement and expand diphthamide-deficiency syndromes and ribosomopathies.


Assuntos
Metiltransferases , Transtornos do Neurodesenvolvimento , Difosfato de Adenosina/metabolismo , Animais , Histidina/análogos & derivados , Histidina/metabolismo , Humanos , Metiltransferases/genética , Camundongos , Camundongos Endogâmicos C57BL , Transtornos do Neurodesenvolvimento/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Síndrome
8.
Redox Biol ; 30: 101438, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32004955

RESUMO

The yeast peroxiredoxin Ahp1, like related anti-oxidant enzymes in other species, undergoes urmylation, a lysine-directed conjugation to ubiquitin-like modifier Urm1. Ahp1 assembles into a homodimer that detoxifies peroxides via forming intersubunit disulfides between peroxidatic and resolving cysteines that are subsequently reduced by the thioredoxin system. Although urmylation coincides with oxidative stress, it is unclear how this modification happens on a molecular level and whether it affects peroxiredoxin activity. Here, we report that thioredoxin mutants decrease Ahp1 urmylation in yeast and each subunit of the oxidized Ahp1 dimer is modified by Urm1 suggesting coupling of urmylation to dimerization. Consistently, Ahp1 mutants unable to form dimers, fail to be urmylated as do mutants that lack the peroxidatic cysteine. Moreover, Ahp1 urmylation involves at least two lysine residues close to the catalytic cysteines and can be prevented in yeast cells exposed to high organic peroxide concentrations. Our results elucidate redox requirements and molecular determinants critical for Ahp1 urmylation, thus providing insights into a potential link between oxidant defense and Urm1 utilization in cells.


Assuntos
Mutação , Peroxirredoxinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Domínio Catalítico , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Modelos Moleculares , Oxirredução , Peróxidos/metabolismo , Peroxirredoxinas/química , Peroxirredoxinas/genética , Conformação Proteica , Multimerização Proteica , Saccharomyces cerevisiae/genética
9.
Biomolecules ; 10(2)2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085421

RESUMO

Modifications found in the Anticodon Stem Loop (ASL) of tRNAs play important roles in regulating translational speed and accuracy. Threonylcarbamoyl adenosine (t6A37) and 5-methoxycarbonyl methyl-2-thiouridine (mcm5s2U34) are critical ASL modifications that have been linked to several human diseases. The model yeast Saccharomyces cerevisiae is viable despite the absence of both modifications, growth is however greatly impaired. The major observed consequence is a subsequent increase in protein aggregates and aberrant morphology. Proteomic analysis of the t6A-deficient strain (sua5 mutant) revealed a global mistranslation leading to protein aggregation without regard to physicochemical properties or t6A-dependent or biased codon usage in parent genes. However, loss of sua5 led to increased expression of soluble proteins for mitochondrial function, protein quality processing/trafficking, oxidative stress response, and energy homeostasis. These results point to a global function for t6A in protein homeostasis very similar to mcm5/s2U modifications.


Assuntos
Proteínas de Ligação a DNA/genética , Histona Acetiltransferases/genética , RNA de Transferência/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Anticódon/genética , Anticódon/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histona Acetiltransferases/metabolismo , Conformação de Ácido Nucleico , Fenótipo , Agregados Proteicos/fisiologia , Biossíntese de Proteínas/genética , Biossíntese de Proteínas/fisiologia , Proteínas/genética , Proteômica/métodos , RNA de Transferência/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Termodinâmica , Tiouridina/análogos & derivados , Tiouridina/química
10.
Nucleic Acids Res ; 47(9): 4814-4830, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30916349

RESUMO

Posttranscriptional RNA modifications occur in all domains of life. Modifications of anticodon bases are of particular importance for ribosomal decoding and proteome homeostasis. The Elongator complex modifies uridines in the wobble position and is highly conserved in eukaryotes. Despite recent insights into Elongator's architecture, the structure and function of its regulatory factor Kti12 have remained elusive. Here, we present the crystal structure of Kti12's nucleotide hydrolase domain trapped in a transition state of ATP hydrolysis. The structure reveals striking similarities to an O-phosphoseryl-tRNA kinase involved in the selenocysteine pathway. Both proteins employ similar mechanisms of tRNA binding and show tRNASec-dependent ATPase activity. In addition, we demonstrate that Kti12 binds directly to Elongator and that ATP hydrolysis is crucial for Elongator to maintain proper tRNA anticodon modification levels in vivo. In summary, our data reveal a hitherto uncharacterized link between two translational control pathways that regulate selenocysteine incorporation and affect ribosomal tRNA selection via specific tRNA modifications.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Adenosina Trifosfatases/genética , Processamento Pós-Transcricional do RNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Adenosina Trifosfatases/química , Anticódon/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Chaetomium/química , Chaetomium/enzimologia , Cristalografia por Raios X , Conformação Proteica , RNA de Transferência/genética , Ribossomos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Uridina/genética
11.
RNA Biol ; 15(6): 829-831, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29671387

RESUMO

The genetic alphabet consists of the four letters: C, A, G, and T in DNA and C,A,G, and U in RNA. Triplets of these four letters jointly encode 20 different amino acids out of which proteins of all organisms are built. This system is universal and is found in all kingdoms of life. However, bases in DNA and RNA can be chemically modified. In DNA, around 10 different modifications are known, and those have been studied intensively over the past 20 years. Scientific studies on DNA modifications and proteins that recognize them gave rise to the large field of epigenetic and epigenomic research. The outcome of this intense research field is the discovery that development, ageing, and stem-cell dependent regeneration but also several diseases including cancer are largely controlled by the epigenetic state of cells. Consequently, this research has already led to the first FDA approved drugs that exploit the gained knowledge to combat disease. In recent years, the ~150 modifications found in RNA have come to the focus of intense research. Here we provide a perspective on necessary and expected developments in the fast expanding area of RNA modifications, termed epitranscriptomics.


Assuntos
DNA de Neoplasias , Epigênese Genética , Epigenômica/normas , Perfilação da Expressão Gênica/normas , Regulação Neoplásica da Expressão Gênica , Neoplasias , RNA Neoplásico , Transcriptoma , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Europa (Continente) , Perfilação da Expressão Gênica/métodos , Humanos , Neoplasias/genética , Neoplasias/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo
12.
Genes (Basel) ; 10(1)2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30597914

RESUMO

Transfer RNA (tRNA) is subject to a multitude of posttranscriptional modifications which can profoundly impact its functionality as the essential adaptor molecule in messenger RNA (mRNA) translation. Therefore, dynamic regulation of tRNA modification in response to environmental changes can tune the efficiency of gene expression in concert with the emerging epitranscriptomic mRNA regulators. Several of the tRNA modifications are required to prevent human diseases and are particularly important for proper development and generation of neurons. In addition to the positive role of different tRNA modifications in prevention of neurodegeneration, certain cancer types upregulate tRNA modification genes to sustain cancer cell gene expression and metastasis. Multiple associations of defects in genes encoding subunits of the tRNA modifier complex Elongator with human disease highlight the importance of proper anticodon wobble uridine modifications (xm5U34) for health. Elongator functionality requires communication with accessory proteins and dynamic phosphorylation, providing regulatory control of its function. Here, we summarized recent insights into molecular functions of the complex and the role of Elongator dependent tRNA modification in human disease.

13.
Biochim Biophys Acta Gene Regul Mech ; 1861(4): 409-418, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29222069

RESUMO

Ribonucleotide modifications perform a wide variety of roles in synthesis, turnover and functionality of tRNA molecules. The presence of particular chemical moieties can refine the internal interaction network within a tRNA molecule, influence its thermodynamic stability, contribute novel chemical properties and affect its decoding behavior during mRNA translation. As the lack of specific modifications in the anticodon stem and loop causes disrupted proteome homeostasis, diminished response to stress conditions, and the onset of human diseases, the underlying modification cascades have recently gained particular scientific and clinical interest. Nowadays, a complicated but conclusive image of the interconnectivity between different enzymatic modification cascades and their resulting tRNA modifications emerges. Here we summarize the current knowledge in the field, focusing on the known instances of cross talk among the enzymatic tRNA modification pathways and the consequences on the dynamic regulation of the tRNA modificome by various factors. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.


Assuntos
Processamento Pós-Transcricional do RNA , RNA de Transferência/metabolismo , Animais , Anticódon/genética , Endorribonucleases/metabolismo , Células Eucarióticas/metabolismo , Humanos , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Modelos Moleculares , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Conformação de Ácido Nucleico , Biossíntese de Proteínas , Estabilidade de RNA , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Neoplásico/metabolismo , RNA de Transferência/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Uridina/análogos & derivados , Uridina/genética , tRNA Metiltransferases/metabolismo
14.
Plant Physiol ; 172(2): 858-873, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27503603

RESUMO

Cytosolic monothiol glutaredoxins (GRXs) are required in iron-sulfur (Fe-S) cluster delivery and iron sensing in yeast and mammals. In plants, it is unclear whether they have similar functions. Arabidopsis (Arabidopsis thaliana) has a sole class II cytosolic monothiol GRX encoded by GRXS17 Here, we used tandem affinity purification to establish that Arabidopsis GRXS17 associates with most known cytosolic Fe-S assembly (CIA) components. Similar to mutant plants with defective CIA components, grxs17 loss-of-function mutants showed some degree of hypersensitivity to DNA damage and elevated expression of DNA damage marker genes. We also found that several putative Fe-S client proteins directly bind to GRXS17, such as XANTHINE DEHYDROGENASE1 (XDH1), involved in the purine salvage pathway, and CYTOSOLIC THIOURIDYLASE SUBUNIT1 and CYTOSOLIC THIOURIDYLASE SUBUNIT2, both essential for the 2-thiolation step of 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) modification of tRNAs. Correspondingly, profiling of the grxs17-1 mutant pointed to a perturbed flux through the purine degradation pathway and revealed that it phenocopied mutants in the elongator subunit ELO3, essential for the mcm5 tRNA modification step, although we did not find XDH1 activity or tRNA thiolation to be markedly reduced in the grxs17-1 mutant. Taken together, our data suggest that plant cytosolic monothiol GRXs associate with the CIA complex, as in other eukaryotes, and contribute to, but are not essential for, the correct functioning of client Fe-S proteins in unchallenged conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Vias Biossintéticas , Citosol/metabolismo , Glutarredoxinas/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Dano ao DNA , Regulação da Expressão Gênica de Plantas , Glutarredoxinas/genética , Immunoblotting , Mutação , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Xantina Desidrogenase/genética , Xantina Desidrogenase/metabolismo
15.
Nucleic Acids Res ; 44(22): 10946-10959, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27496282

RESUMO

Using budding yeast, we investigated a negative interaction network among genes for tRNA modifications previously implicated in anticodon-codon interaction: 5-methoxy-carbonyl-methyl-2-thio-uridine (mcm5s2U34: ELP3, URM1), pseudouridine (Ψ38/39: DEG1) and cyclic N6-threonyl-carbamoyl-adenosine (ct6A37: TCD1). In line with functional cross talk between these modifications, we find that combined removal of either ct6A37 or Ψ38/39 and mcm5U34 or s2U34 results in morphologically altered cells with synthetic growth defects. Phenotypic suppression by tRNA overexpression suggests that these defects are caused by malfunction of tRNALysUUU or tRNAGlnUUG, respectively. Indeed, mRNA translation and synthesis of the Gln-rich prion Rnq1 are severely impaired in the absence of Ψ38/39 and mcm5U34 or s2U34, and this defect can be rescued by overexpression of tRNAGlnUUG Surprisingly, we find that combined modification defects in the anticodon loops of different tRNAs induce similar cell polarity- and nuclear segregation defects that are accompanied by increased aggregation of cellular proteins. Since conditional expression of an artificial aggregation-prone protein triggered similar cytological aberrancies, protein aggregation is likely responsible for loss of morphogenesis and cytokinesis control in mutants with inappropriate tRNA anticodon loop modifications.


Assuntos
RNA de Transferência de Glutamina/genética , RNA de Transferência de Lisina/genética , Saccharomycetales/genética , Anticódon/genética , Pareamento de Bases , Sequência de Bases , Genes Fúngicos , Homeostase , Morfogênese , Biossíntese de Proteínas , RNA Fúngico/genética , Saccharomycetales/citologia , Saccharomycetales/crescimento & desenvolvimento , Termodinâmica
16.
PLoS Genet ; 11(1): e1004931, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25569479

RESUMO

Elongator is a conserved protein complex comprising six different polypeptides that has been ascribed a wide range of functions, but which is now known to be required for modification of uridine residues in the wobble position of a subset of tRNAs in yeast, plants, worms and mammals. In previous work, we showed that Elongator's largest subunit (Elp1; also known as Iki3) was phosphorylated and implicated the yeast casein kinase I Hrr25 in Elongator function. Here we report identification of nine in vivo phosphorylation sites within Elp1 and show that four of these, clustered close to the Elp1 C-terminus and adjacent to a region that binds tRNA, are important for Elongator's tRNA modification function. Hrr25 protein kinase directly modifies Elp1 on two sites (Ser-1198 and Ser-1202) and through analyzing non-phosphorylatable (alanine) and acidic, phosphomimic substitutions at Ser-1198, Ser-1202 and Ser-1209, we provide evidence that phosphorylation plays a positive role in the tRNA modification function of Elongator and may regulate the interaction of Elongator both with its accessory protein Kti12 and with Hrr25 kinase.


Assuntos
Caseína Quinase I/genética , Histona Acetiltransferases/genética , Fatores de Alongamento de Peptídeos/genética , RNA de Transferência/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Alanina/genética , Caseína Quinase I/metabolismo , Regulação Fúngica da Expressão Gênica , Histona Acetiltransferases/metabolismo , Complexos Multiproteicos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Fenótipo , Fosforilação , Proteínas de Saccharomyces cerevisiae/metabolismo , Uridina/genética
17.
Mol Microbiol ; 94(6): 1213-26, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25352115

RESUMO

Diphthamide is a conserved modification in archaeal and eukaryal translation elongation factor 2 (EF2). Its name refers to the target function for diphtheria toxin, the disease-causing agent that, through ADP ribosylation of diphthamide, causes irreversible inactivation of EF2 and cell death. Although this clearly emphasizes a pathobiological role for diphthamide, its physiological function is unclear, and precisely why cells need EF2 to contain diphthamide is hardly understood. Nonetheless, the conservation of diphthamide biosynthesis together with syndromes (i.e. ribosomal frame-shifting, embryonic lethality, neurodegeneration and cancer) typical of mutant cells that cannot make it strongly suggests that diphthamide-modified EF2 occupies an important and translation-related role in cell proliferation and development. Whether this is structural and/or regulatory remains to be seen. However, recent progress in dissecting the diphthamide gene network (DPH1-DPH7) from the budding yeast Saccharomyces cerevisiae has significantly advanced our understanding of the mechanisms required to initiate and complete diphthamide synthesis on EF2. Here, we review recent developments in the field that not only have provided novel, previously overlooked and unexpected insights into the pathway and the biochemical players required for diphthamide synthesis but also are likely to foster innovative studies into the potential regulation of diphthamide, and importantly, its ill-defined biological role.


Assuntos
Histidina/análogos & derivados , Saccharomyces cerevisiae/metabolismo , Evolução Molecular , Histidina/genética , Histidina/metabolismo , Fator 2 de Elongação de Peptídeos/química , Fator 2 de Elongação de Peptídeos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
PLoS Genet ; 9(2): e1003334, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23468660

RESUMO

Diphthamide is a highly modified histidine residue in eukaryal translation elongation factor 2 (eEF2) that is the target for irreversible ADP ribosylation by diphtheria toxin (DT). In Saccharomyces cerevisiae, the initial steps of diphthamide biosynthesis are well characterized and require the DPH1-DPH5 genes. However, the last pathway step-amidation of the intermediate diphthine to diphthamide-is ill-defined. Here we mine the genetic interaction landscapes of DPH1-DPH5 to identify a candidate gene for the elusive amidase (YLR143w/DPH6) and confirm involvement of a second gene (YBR246w/DPH7) in the amidation step. Like dph1-dph5, dph6 and dph7 mutants maintain eEF2 forms that evade inhibition by DT and sordarin, a diphthamide-dependent antifungal. Moreover, mass spectrometry shows that dph6 and dph7 mutants specifically accumulate diphthine-modified eEF2, demonstrating failure to complete the final amidation step. Consistent with an expected requirement for ATP in diphthine amidation, Dph6 contains an essential adenine nucleotide hydrolase domain and binds to eEF2. Dph6 is therefore a candidate for the elusive amidase, while Dph7 apparently couples diphthine synthase (Dph5) to diphthine amidation. The latter conclusion is based on our observation that dph7 mutants show drastically upregulated interaction between Dph5 and eEF2, indicating that their association is kept in check by Dph7. Physiologically, completion of diphthamide synthesis is required for optimal translational accuracy and cell growth, as indicated by shared traits among the dph mutants including increased ribosomal -1 frameshifting and altered responses to translation inhibitors. Through identification of Dph6 and Dph7 as components required for the amidation step of the diphthamide pathway, our work paves the way for a detailed mechanistic understanding of diphthamide formation.


Assuntos
Amidoidrolases , Carbono-Nitrogênio Ligases/genética , Histidina/análogos & derivados , Metiltransferases , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae , Trifosfato de Adenosina/metabolismo , Amidas/química , Amidas/metabolismo , Amidoidrolases/genética , Amidoidrolases/metabolismo , Quinase do Fator 2 de Elongação/genética , Quinase do Fator 2 de Elongação/metabolismo , Histidina/biossíntese , Metiltransferases/genética , Metiltransferases/metabolismo , Mutação , Ligação Proteica , Biossíntese de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
FEMS Yeast Res ; 6(3): 404-13, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16630280

RESUMO

Killer-toxin complexes produced by Kluyveromyces lactis and Pichia acaciae inhibit cell proliferation of Saccharomyces cerevisiae. Analysis of their actions in haploid MATalpha cells revealed that introduction of the opposite mating-type locus (MATa) significantly suppressed antizymosis. Together with resistance expressed by MATa/MATalpha diploids, the reciprocal action of MATa or MATalpha in haploids of opposite mating types suggests that these killer toxins may be subject to MAT locus control. Congruently, derepressing the silent mating-type loci, HMR and HML, by removing individual components of the histone deacetylase complex Sir1-4, either by transposon-tagging or by chemically inactivating the histone deacetylase catalytic subunit Sir2, yields toxin resistance. Consistent with MAT control of toxin action, killer-toxin-insensitive S. cerevisiae mutants (kti) become mating-compromised despite resisting the toxins' cell-cycle effects. Mating inhibition largely depends on the time point of toxin application to the mating mixtures and is less pronounced in Elongator mutants, whose resistance to the toxins' cell-cycle effects is the result of toxin-target process deficiencies. In striking contrast, non-Elongator mutants defective in early-response events such as toxin import/activation hardly recover from toxin-induced mating inhibition. This study reveals a novel effect of yeast killer toxins on mating and sexual reproduction that is independent of their impact on cellular proliferation and cell-cycle progression.


Assuntos
Genes Fúngicos Tipo Acasalamento , Micotoxinas/toxicidade , Saccharomyces cerevisiae/crescimento & desenvolvimento , Heterozigoto , Inibidores de Histona Desacetilases , Histona Desacetilases/genética , Histona Desacetilases/fisiologia , Fatores Matadores de Levedura , Fator de Acasalamento , Mutagênese Insercional , Mutação , Peptídeos/genética , Peptídeos/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/fisiologia , Sirtuína 2 , Sirtuínas/genética , Sirtuínas/fisiologia
20.
Cell Microbiol ; 6(6): 569-80, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15104597

RESUMO

Zymocin, a three-subunit (alpha beta gamma) toxin complex from Kluyveromyces lactis, imposes a cell cycle block on Saccharomyces cerevisiae. Phenotypic analysis of the resistant kti10 mutant implies a membrane defect, suggesting that KTI10 represents a gene involved early in the zymocin response. Consistently, KTI10 is shown here to be allelic to PMA1 encoding H(+)-ATPase, a plasma membrane H(+) pump vital for membrane energization (Delta Psi). Like pma1 mutants, kti10 cells lose viability at low pH, indicating a pH homeostasis defect, and resist the antibiotic hygromycin B, uptake of which is known to be Pma1 and Delta Psi sensitive. Similar to kti10 cells, pma1 mutants with reported H(+) pump defects survive in the presence of exozymocin but do not resist endogenous expression of its lethal gamma-toxin subunit. Based on DNA sequence data, kti10 cells are predicted to produce a malfunctional Pma1 variant with expression levels that are normal. Intriguingly, zymocin protection of kti10 cells is suppressed by excess H(+), a scenario ineffective in bypassing resistance of chitin or toxin target mutants. Together with unaltered zymocin docking and gamma-toxin import events in kti10 cells, our data suggest that Pma1's role in zymocin action is likely to involve activation of gamma-toxin in a step following its cellular uptake.


Assuntos
Quitina/metabolismo , Kluyveromyces , Micotoxinas/toxicidade , ATPases Translocadoras de Prótons/metabolismo , Saccharomyces cerevisiae/enzimologia , Alelos , Antifúngicos/farmacologia , DNA Fúngico/química , DNA Fúngico/isolamento & purificação , Farmacorresistência Fúngica , Etanol/toxicidade , Teste de Complementação Genética , Concentração de Íons de Hidrogênio , Higromicina B/farmacologia , Fatores Matadores de Levedura , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Micotoxinas/metabolismo , ATPases Translocadoras de Prótons/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA