Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 293
Filtrar
1.
Oncotarget ; 15: 248-254, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38588464

RESUMO

Acute myeloid leukemia (AML) is characterized by the rapid proliferation of mutagenic hematopoietic progenitors in the bone marrow. Conventional therapies include chemotherapy and bone marrow stem cell transplantation; however, they are often associated with poor prognosis. Notably, growth hormone-releasing hormone (GHRH) receptor antagonist MIA-602 has been shown to impede the growth of various human cancer cell lines, including AML. This investigation examined the impact of MIA-602 as monotherapy and in combination with Doxorubicin on three Doxorubicin-resistant AML cell lines, KG-1A, U-937, and K-562. The in vitro results revealed a significant reduction in cell viability for all treated wild-type cells. Doxorubicin-resistant clones were similarly susceptible to MIA-602 as the wild-type counterpart. Our in vivo experiment of xenografted nude mice with Doxorubicin-resistant K-562 revealed a reduction in tumor volume with MIA-602 treatment compared to control. Our study demonstrates that these three AML cell lines, and their Doxorubicin-resistant clones, are susceptible to GHRH antagonist MIA-602.


Assuntos
Hormônio Liberador de Hormônio do Crescimento , Leucemia Mieloide Aguda , Sermorelina/análogos & derivados , Camundongos , Animais , Humanos , Camundongos Nus , Proliferação de Células , Linhagem Celular Tumoral , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Doxorrubicina/farmacologia
2.
Cells ; 12(22)2023 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-37998350

RESUMO

Growth hormone (GH)-releasing hormone (GHRH) has been suggested to play a crucial role in brain function. We aimed to further investigate the effects of a novel GHRH antagonist of the Miami (MIA) series, MIA-602, on emotional disorders and explore the relationships between the endocrine system and mood disorders. In this context, the effects induced by MIA-602 were also analyzed in comparison to vehicle-treated mice with GH deficiency due to generalized ablation of the GHRH gene (GHRH knock out (GHRHKO)). We show that the chronic subcutaneous administration of MIA-602 to wild type (+/+) mice, as well as generalized ablation of the GHRH gene, is associated with anxiolytic and antidepressant behavior. Moreover, immunohistochemical and Western blot analyses suggested an evident activation of Nrf2, HO1, and NQO1 in the prefrontal cortex of both +/+ mice treated with MIA-602 (+/+ MIA-602) and homozygous GHRHKO (-/- control) animals. Finally, we also found significantly decreased COX-2, iNOS, NFkB, and TNF-α gene expressions, as well as increased P-AKT and AKT levels in +/+ MIA-602 and -/- control animals compared to +/+ mice treated with vehicle (+/+ control). We hypothesize that the generalized ablation of the GHRH gene leads to a dysregulation of neural pathways, which is mimicked by GHRH antagonist treatment.


Assuntos
NF-kappa B , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , Hormônio Liberador de Hormônio do Crescimento/genética , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Homozigoto
3.
Proc Natl Acad Sci U S A ; 120(48): e2308342120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37983492

RESUMO

COVID-19 pneumonia causes acute lung injury and acute respiratory distress syndrome (ALI/ARDS) characterized by early pulmonary endothelial and epithelial injuries with altered pulmonary diffusing capacity and obstructive or restrictive physiology. Growth hormone-releasing hormone receptor (GHRH-R) is expressed in the lung and heart. GHRH-R antagonist, MIA-602, has been reported to modulate immune responses to bleomycin lung injury and inflammation in granulomatous sarcoidosis. We hypothesized that MIA-602 would attenuate rVSV-SARS-CoV-2-induced pulmonary dysfunction and heart injury in a BSL-2 mouse model. Male and female K18-hACE2tg mice were inoculated with SARS-CoV-2/USA-WA1/2020, BSL-2-compliant recombinant VSV-eGFP-SARS-CoV-2-Spike (rVSV-SARS-CoV-2), or PBS, and lung viral load, weight loss, histopathology, and gene expression were compared. K18-hACE2tg mice infected with rVSV-SARS-CoV-2 were treated daily with subcutaneous MIA-602 or vehicle and conscious, unrestrained plethysmography performed on days 0, 3, and 5 (n = 7 to 8). Five days after infection mice were killed, and blood and tissues collected for histopathology and protein/gene expression. Both native SARS-CoV-2 and rVSV-SARS-CoV-2 presented similar patterns of weight loss, infectivity (~60%), and histopathologic changes. Daily treatment with MIA-602 conferred weight recovery, reduced lung perivascular inflammation/pneumonia, and decreased lung/heart ICAM-1 expression compared to vehicle. MIA-602 rescued altered respiratory rate, increased expiratory parameters (Te, PEF, EEP), and normalized airflow parameters (Penh and Rpef) compared to vehicle, consistent with decreased airway inflammation. RNASeq followed by protein analysis revealed heightened levels of inflammation and end-stage necroptosis markers, including ZBP1 and pMLKL induced by rVSV-SARS-CoV-2, that were normalized by MIA-602 treatment, consistent with an anti-inflammatory and pro-survival mechanism of action in this preclinical model of COVID-19 pneumonia.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Camundongos , Masculino , Feminino , Animais , SARS-CoV-2 , COVID-19/patologia , Pulmão/patologia , Inflamação/patologia , Síndrome do Desconforto Respiratório/patologia , Redução de Peso , Camundongos Transgênicos , Modelos Animais de Doenças
4.
Vitam Horm ; 123: 1-26, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37717982

RESUMO

The hypothalamic peptide growth hormone-releasing hormone (GHRH) stimulates the secretion of growth hormone (GH) from the pituitary through binding and activation of the pituitary type of GHRH receptor (GHRH-R), which belongs to the family of G protein-coupled receptors with seven potential membrane-spanning domains. Splice variants of GHRH-Rs (SV) in human tumors and other extra pituitary tissues were identified and their cDNA was sequenced. Among the SVs, splice variant 1 (SV1) possesses the greatest similarity to the full-length GHRH-R and remains functional by eliciting cAMP signaling and mitogenic activity upon GHRH stimulation. A large body of work have evaluated potential clinical applications of agonists and antagonists of GHRH in diverse fields, including endocrinology, oncology, cardiology, diabetes, obesity, metabolic dysfunctions, Alzheimer's disease, ophthalmology, wound healing and other applications. In this chapter, we briefly review the expression and potential function of GHRH-Rs and their SVs in various tissues and also elucidate and summarize the activation, molecular mechanism and signalization pathways of these receptors. Therapeutic applications of GHRH analogs are also discussed.


Assuntos
Receptores de Neuropeptídeos , Transdução de Sinais , Humanos , Hormônio do Crescimento , Receptores de Neuropeptídeos/genética , Receptores de Hormônios Reguladores de Hormônio Hipofisário/genética
5.
Front Immunol ; 14: 1231363, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37649486

RESUMO

COVID-19 is characterized by an excessive inflammatory response and macrophage hyperactivation, leading, in severe cases, to alveolar epithelial injury and acute respiratory distress syndrome. Recent studies have reported that SARS-CoV-2 spike (S) protein interacts with bacterial lipopolysaccharide (LPS) to boost inflammatory responses in vitro, in macrophages and peripheral blood mononuclear cells (PBMCs), and in vivo. The hypothalamic hormone growth hormone-releasing hormone (GHRH), in addition to promoting pituitary GH release, exerts many peripheral functions, acting as a growth factor in both malignant and non-malignant cells. GHRH antagonists, in turn, display potent antitumor effects and antinflammatory activities in different cell types, including lung and endothelial cells. However, to date, the antinflammatory role of GHRH antagonists in COVID-19 remains unexplored. Here, we examined the ability of GHRH antagonist MIA-602 to reduce inflammation in human THP-1-derived macrophages and PBMCs stimulated with S protein and LPS combination. Western blot and immunofluorescence analysis revealed the presence of GHRH receptor and its splice variant SV1 in both THP-1 cells and PBMCs. Exposure of THP-1 cells to S protein and LPS combination increased the mRNA levels and protein secretion of TNF-α and IL-1ß, as well as IL-8 and MCP-1 gene expression, an effect hampered by MIA-602. Similarly, MIA-602 hindered TNF-α and IL-1ß secretion in PBMCs and reduced MCP-1 mRNA levels. Mechanistically, MIA-602 blunted the S protein and LPS-induced activation of inflammatory pathways in THP-1 cells, such as NF-κB, STAT3, MAPK ERK1/2 and JNK. MIA-602 also attenuated oxidative stress in PBMCs, by decreasing ROS production, iNOS and COX-2 protein levels, and MMP9 activity. Finally, MIA-602 prevented the effect of S protein and LPS synergism on NF-кB nuclear translocation and activity. Overall, these findings demonstrate a novel antinflammatory role for GHRH antagonists of MIA class and suggest their potential development for the treatment of inflammatory diseases, such as COVID-19 and related comorbidities.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Células Endoteliais , Hormônio Liberador de Hormônio do Crescimento/antagonistas & inibidores , Inflamação/tratamento farmacológico , Leucócitos Mononucleares , Lipopolissacarídeos , SARS-CoV-2 , Fator de Necrose Tumoral alfa
6.
Exp Lung Res ; 49(1): 152-164, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37584484

RESUMO

Purpose: Growth hormone-releasing hormone (GHRH) is a 44-amino acid peptide that regulates growth hormone (GH) secretion. We hypothesized that GHRH receptor (GHRH-R) in alveolar type 2 (AT2) cells could modulate pro-inflammatory and possibly subsequent pro-fibrotic effects of lipopolysaccharide (LPS) or cytokines, such that AT2 cells could participate in lung inflammation and fibrosis. Methods: We used human alveolar type 2 (iAT2) epithelial cells derived from induced pluripotent stem cells (iPSC) to investigate how GHRH-R modulates gene and protein expression. We tested iAT2 cells' gene expression in response to LPS or cytokines, seeking whether these mechanisms caused endogenous production of pro-inflammatory molecules or mesenchymal markers. Quantitative real-time PCR (RT-PCR) and Western blotting were used to investigate differential expression of epithelial and mesenchymal markers. Result: Incubation of iAT2 cells with LPS increased expression of IL1-ß and TNF-α in addition to mesenchymal genes, including ACTA2, FN1 and COL1A1. Alveolar epithelial cell gene expression due to LPS was significantly inhibited by GHRH-R peptide antagonist MIA-602. Incubation of iAT2 cells with cytokines like those in fibrotic lungs similarly increased expression of genes for IL1-ß, TNF-α, TGFß-1, Wnt5a, smooth muscle actin, fibronectin and collagen. Expression of mesenchymal proteins, such as N-cadherin and vimentin, were also elevated after prolonged exposure to cytokines, confirming epithelial production of pro-inflammatory molecules as an important mechanism that might lead to subsequent fibrosis. Conclusion: iAT2 cells clearly expressed the GHRH-R. Exposure to LPS or cytokines increased iAT2 cell production of pro-inflammatory factors. GHRH-R antagonist MIA-602 inhibited pro-inflammatory gene expression, implicating iAT2 cell GHRH-R signaling in lung inflammation and potentially in fibrosis.


Assuntos
Pneumonia , Fibrose Pulmonar , Humanos , Células Epiteliais Alveolares/metabolismo , Fator de Necrose Tumoral alfa , Lipopolissacarídeos/farmacologia , Hormônio Liberador de Hormônio do Crescimento/genética , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Inflamação , Citocinas
7.
Proc Natl Acad Sci U S A ; 120(25): e2209810120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307472

RESUMO

Patients with type 1 diabetes (T1D) suffer from insufficient functional ß-cell mass, which results from infiltration of inflammatory cells and cytokine-mediated ß-cell death. Previous studies demonstrated the beneficial effects of agonists of growth hormone-releasing hormone receptor (GHRH-R), such as MR-409 on preconditioning of islets in a transplantation model. However, the therapeutic potential and protective mechanisms of GHRH-R agonists on models of T1D diabetes have not been explored. Using in vitro and in vivo models of T1D, we assessed the protective propertie of the GHRH agonist, MR409 on ß-cells. The treatment of insulinoma cell lines and rodent and human islets with MR-409 induces Akt signaling by induction of insulin receptor substrate 2 (IRS2), a master regulator of survival and growth in ß-cells, in a PKA-dependent manner. The increase in cAMP/PKA/CREB/IRS2 axis by MR409 was associated with decrease in ß-cell death and improved insulin secretory function in mouse and human islets exposed to proinflammatory cytokines. The assessment of the effects of GHRH agonist MR-409 in a model of T1D induced by low-dose streptozotocin showed that mice treated with MR-409 exhibited better glucose homeostasis, higher insulin levels, and preservation of ß-cell mass. Increased IRS2 expression in ß-cells in the group treated with MR-409 corroborated the in vitro data and provided evidence for the underlying mechanism responsible for beneficial effects of MR-409 in vivo. Collectively, our data show that MR-409 is a novel therapeutic agent for the prevention and treatment of ß-cells death in T1D.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Estreptozocina , Citocinas , Insulina
8.
Cancers (Basel) ; 15(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37370714

RESUMO

GHRH is a hypothalamic peptide shown to stimulate the proliferation of malignant cells in humans. We have previously shown that the use of GHRH antagonist MIA-602 successfully suppressed the growth of many human cancer cell lines, spanning more than 20 types of cancers. In this study, we demonstrate the presence of GHRH-R in the NB4, NB4-RAA, and K-562 model cell lines. Furthermore, we demonstrate the inhibited proliferation of all three cell lines in vitro after incubation with MIA-602. The treatment of xenografts of human APL cell lines with MIA-602 led to a significant reduction in tumor growth. Additionally, combination therapy with both doxorubicin (DOX) and MIA-602 showed a marked synergistic effect in reducing the proliferation of the K-562 AML cell line. These findings suggest that MIA-602 could be utilized to address resistance to all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) therapies, as well as in augmenting anthracycline-based regimens.

9.
Biomedicines ; 11(3)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36979698

RESUMO

BACKGROUND: Rectal cancer constitutes nearly one-third of all colorectal cancer diagnoses, and certain clinical and molecular markers have been studied as potential prognosticators of patient survival. The main objective of our study was to investigate the relationship between the expression intensities of certain proteins, including growth-hormone-releasing hormone receptor (GHRH-R), Hsp90, Hsp16.2, p-Akt and SOUL, in specimens of locally advanced rectal cancer patients, as well as the time to metastasis and 10-year overall survival (OS) rates. We also investigated whether these outcome measures were associated with the presence of other clinical parameters. METHODS: In total, 109 patients were investigated retrospectively. Samples of pretreatment tumors were stained for the proteins GHRH-R, Hsp90, Hsp16.2, p-Akt and SOUL using immunhistochemistry methods. Kaplan-Meier curves were used to show the relationships between the intensity of expression of biomarkers, clinical parameters, the time to metastasis and the 10-year OS rate. RESULTS: High levels of p-Akt, GHRH-R and Hsp90 were associated with a significantly decreased 10-year OS rate (p = 0.001, p = 0.000, p = 0.004, respectively) and high expression levels of p-Akt and GHRH-R were correlated with a significantly shorter time to metastasis. Tumors localized in the lower third of the rectum were linked to both a significantly longer time to metastasis and an improved 10-year OS rate. CONCLUSIONS: Hsp 90, pAkt and GHRH-R as well as the lower-third localization of the tumor were predictive of the 10-year OS rate in locally advanced rectal cancer patients. The GHRH-R and Hsp90 expression levels were independent prognosticators of OS. Our results imply that GHRH-R could play a particularly important role both as a molecular biomarker and as a target for the anticancer treatment of advanced rectal cancer.

10.
Am J Physiol Heart Circ Physiol ; 324(6): H739-H750, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36897749

RESUMO

Heart failure (HF) with preserved ejection fraction (HFpEF) represents a major unmet medical need owing to its diverse pathophysiology and lack of effective therapies. Potent synthetic, agonists (MR-356 and MR-409) of growth hormone-releasing hormone (GHRH) improve the phenotype of models of HF with reduced ejection fraction (HFrEF) and in cardiorenal models of HFpEF. Endogenous GHRH exhibits a broad range of regulatory influences in the cardiovascular (CV) system and aging and plays a role in several cardiometabolic conditions including obesity and diabetes. Whether agonists of GHRH can improve the phenotype of cardiometabolic HFpEF remains untested and unknown. Here we tested the hypothesis that MR-356 can mitigate/reverse the cardiometabolic HFpEF phenotype. C57BL6N mice received a high-fat diet (HFD) plus the nitric oxide synthase inhibitor (l-NAME) for 9 wk. After 5 wk of HFD + l-NAME regimen, animals were randomized to receive daily injections of MR-356 or placebo during a 4-wk period. Control animals received no HFD + l-NAME or agonist treatment. Our results showed the unique potential of MR-356 to treat several HFpEF-like features including cardiac hypertrophy, fibrosis, capillary rarefaction, and pulmonary congestion. MR-356 improved cardiac performance by improving diastolic function, global longitudinal strain (GLS), and exercise capacity. Importantly, the increased expression of cardiac pro-brain natriuretic peptide (pro-BNP), inducible nitric oxide synthase (iNOS), and vascular endothelial growth factor-A (VEGF-A) was restored to normal levels suggesting that MR-356 reduced myocardial stress associated with metabolic inflammation in HFpEF. Thus, agonists of GHRH may be an effective therapeutic strategy for the treatment of cardiometabolic HFpEF phenotype.NEW & NOTEWORTHY This randomized study used rigorous hemodynamic tools to test the efficacy of a synthetic GHRH agonist to improve cardiac performance in a cardiometabolic HFpEF. Daily injection of the GHRH agonist, MR-356, reduced the HFpEF-like effects as evidenced by improved diastolic dysfunction, reduced cardiac hypertrophy, fibrosis, and pulmonary congestion. Notably, end-diastolic pressure and end-diastolic pressure-volume relationship were reset to control levels. Moreover, treatment with MR-356 increased exercise capacity and reduced myocardial stress associated with metabolic inflammation in HFpEF.


Assuntos
Insuficiência Cardíaca , Animais , Camundongos , Cardiomegalia , Modelos Animais de Doenças , Fibrose , Hormônio Liberador de Hormônio do Crescimento , Inflamação , NG-Nitroarginina Metil Éster , Volume Sistólico/fisiologia , Fator A de Crescimento do Endotélio Vascular , Função Ventricular Esquerda
11.
Int J Mol Sci ; 23(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36232554

RESUMO

Pleural mesothelioma (PM) is an aggressive cancer with poor prognosis and no effective therapies, mainly caused by exposure to asbestos. Antagonists of growth hormone-releasing hormone (GHRH) display strong antitumor effects in many experimental cancers, including lung cancer and mesothelioma. Here, we aimed to determine whether GHRH antagonist MIA-690 potentiates the antitumor effect of cisplatin and pemetrexed in PM. In vitro, MIA-690, in combination with cisplatin and pemetrexed, synergistically reduced cell viability, restrained cell proliferation and enhanced apoptosis, compared with drugs alone. In vivo, the same combination resulted in a strong growth inhibition of MSTO-211H xenografts, decreased tumor cell proliferation and increased apoptosis. Mechanistically, MIA-690, particularly with chemotherapeutic drugs, inhibited proliferative and oncogenic pathways, such as MAPK ERK1/2 and cMyc, and downregulated cyclin D1 and B1 mRNAs. Inflammatory pathways such as NF-kB and STAT3 were also reduced, as well as oxidative, angiogenic and tumorigenic markers (iNOS, COX-2, MMP2, MMP9 and HMGB1) and growth factors (VEGF and IGF-1). Overall, these findings strongly suggest that GHRH antagonists of MIA class, such as MIA-690, could increase the efficacy of standard therapy in PM.


Assuntos
Proteína HMGB1 , Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurais , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Ciclina D1 , Ciclo-Oxigenase 2 , Hormônio Liberador de Hormônio do Crescimento , Humanos , Fator de Crescimento Insulin-Like I/uso terapêutico , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz/genética , Mesotelioma/tratamento farmacológico , Mesotelioma/patologia , NF-kappa B/metabolismo , Pemetrexede/farmacologia , Pemetrexede/uso terapêutico , Neoplasias Pleurais/tratamento farmacológico , Neoplasias Pleurais/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
Molecules ; 27(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35566020

RESUMO

Antagonists of growth hormone-releasing hormone (GHRH) inhibit the growth of various tumors, including endometrial carcinomas (EC). However, tumoral receptors that mediate the antiproliferative effects of GHRH antagonists in human ECs have not been fully characterized. In this study, we investigated the expression of mRNA for GHRH and splice variants (SVs) of GHRH receptors (GHRH-R) in 39 human ECs and in 7 normal endometrial tissue samples using RT-PCR. Primers designed for the PCR amplification of mRNA for the full length GHRH-R and SVs were utilized. The PCR products were sequenced, and their specificity was confirmed. Nine ECs cancers (23%) expressed mRNA for SV1, three (7.7%) showed SV2 and eight (20.5%) revealed mRNA for SV4. The presence of SVs for GHRH-Rs could not be detected in any of the normal endometrial tissue specimens. The presence of specific, high affinity GHRH-Rs was also demonstrated in EC specimens using radioligand binding studies. Twenty-four of the investigated thirty-nine tumor samples (61.5%) and three of the seven corresponding normal endometrial tissues (42.9%) expressed mRNA for GHRH ligand. Our findings suggest the possible existence of an autocrine loop in EC based on GHRH and its tumoral SV receptors. The antiproliferative effects of GHRH antagonists on EC are likely to be exerted in part by the local SVs and GHRH system.


Assuntos
Processamento Alternativo , Neoplasias do Endométrio , Hormônio Liberador de Hormônio do Crescimento/genética , Receptores de Neuropeptídeos/genética , Receptores de Hormônios Reguladores de Hormônio Hipofisário/genética , Primers do DNA , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Feminino , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Hormônio Liberador de Hormônio do Crescimento/farmacologia , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Prostate ; 82(8): 933-941, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35322894

RESUMO

BACKGROUND: Growth hormone-releasing hormone (GHRH) and its receptors have been implicated in the progression of various tumors. In this study, we analyzed the carcinogenetic potential of exposure to GHRH of a nontumor human prostate epithelial cell line (RWPE-1) as well as its transforming effect in a xenograft model. METHODS: We performed cell viability, cell proliferation, adhesion and migration assays. In addition, metalloprotease (MMP)-2 activity by means gelatin zymography, GHRH-R subcellular location using confocal immunofluorescence microscopy and vascular endothelial growth factor (VEGF) levels by enzyme-linked immunoassay were assessed. Besides, we developed an in vivo model in order vivo model to determine the role of GHRH on tumorigenic transformation of RWPE-1 cells. RESULTS: In cell cultures, we observed development of a migratory phenotype consistent with the gelatinolytic activity of MMP-2, expression of VEGF, as well as E-cadherin-mediated cell-cell adhesion and increased cell motility. Treatment with 0.1 µM GHRH for 24 h significantly increased cell viability and cell proliferation. Similar effects of GHRH were seen in RWPE-1 tumors developed by subcutaneous injection of GHRH-treated cells in athymic nude mice, 49 days after inoculation. CONCLUSIONS: Thus, GHRH appears to act as a cytokine in the transformation of RWPE-1 cells by mechanisms that likely involve epithelial-mesenchymal transition, thus reinforcing the role of GHRH in tumorigenesis of prostate.


Assuntos
Neoplasias da Próstata , Sermorelina , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Células Epiteliais/metabolismo , Hormônio Liberador de Hormônio do Crescimento , Humanos , Masculino , Camundongos , Camundongos Nus , Próstata/patologia , Neoplasias da Próstata/patologia , Sermorelina/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular
14.
Biol Reprod ; 106(1): 145-154, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34792103

RESUMO

Endometrial stromal cells remodeling is critical during human pregnancy. Growth hormone-releasing hormone and its functional receptor have been shown to be expressed in gynecological cancer cells and eutopic endometrial stromal cells. Recent studies have demonstrated the potential clinical uses of antagonists of growth hormone-releasing hormone as effective antitumor agents because of its directly antagonistic effect on the locally produced growth hormone-releasing hormone in gynecological tumors. However, the impact of growth hormone-releasing hormone antagonists on normal endometrial stromal cell growth remained to be elucidated. The aim of this study was to investigate the effect of a growth hormone-releasing hormone antagonist (JMR-132) on cell proliferation and apoptosis of human decidual stromal cells and the underlying molecular mechanisms. Our results showed that growth hormone-releasing hormone and the splice variant 1 of growth hormone-releasing hormone receptor are expressed in human decidual stromal cells isolated from the decidual tissues of early pregnant women receiving surgical abortion. In addition, treatment of stroma cells with JMR-132 induced cell apoptosis with increasing cleaved caspase-3 and caspase-9 activities and decrease cell viability in a time- and dose-dependent manner. Using a dual inhibition approach (pharmacological inhibitors and siRNA-mediated knockdown), we showed that JMR-132-induced activation of apoptotic signals are mediated by the activation of ERK1/2 and JNK signaling pathways and the subsequent upregulation of GADD45alpha. Taken together, JMR-132 suppresses cell survival of decidual stromal cells by inducing apoptosis through the activation of ERK1/2- and JNK-mediated upregulation of GADD45alpha in human endometrial stromal cells. Our findings provide new insights into the potential impact of growth hormone-releasing hormone antagonist on the decidual programming in humans.


Assuntos
Apoptose/efeitos dos fármacos , Decídua/citologia , Hormônio Liberador de Hormônio do Crescimento/antagonistas & inibidores , Células Estromais/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Decídua/efeitos dos fármacos , Implantação do Embrião/efeitos dos fármacos , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Gravidez , Sermorelina/análogos & derivados , Sermorelina/farmacologia , Células Estromais/fisiologia , Regulação para Cima/efeitos dos fármacos
15.
Peptides ; 150: 170716, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34952135

RESUMO

The syntheses and biological evaluation of GHRH antagonists of AVR series with high anticancer and anti-inflammatory activities are described. Compared to our previously reported GHRH antagonist 602 of MIAMI series, AVR analogs contain additional modifications at positions 0, 6, 8, 10, 11, 12, 20, 21, 29 and 30, which induce greater antitumor activities. Five of nineteen tested AVR analogs presented binding affinities to the membrane GHRH receptors on human pituitary, 2-4-fold better than MIA-602. The antineoplastic properties of these analogs were evaluated in vitro using proliferation assays and in vivo in nude mice xenografted with various human cancer cell lines including lung (NSCLC-ADC HCC827 and NSCLC H460), gastric (NCI-N87), pancreatic (PANC-1 and CFPAC-1), colorectal (HT-29), breast (MX-1), glioblastoma (U87), ovarian (SK-OV-3 and OVCAR-3) and prostatic (PC3) cancers. In vitro AVR analogs showed inhibition of cell viability equal to or greater than MIA-602. After subcutaneous administration at 5 µg/day doses, some AVR antagonists demonstrated better inhibition of tumor growth in nude mice bearing various human cancers, with analog AVR-353 inducing stronger suppression than MIA-602 in lung, gastric, pancreatic and colorectal cancers and AVR-352 in ovarian cancers and glioblastoma. Both antagonists induced greater inhibition of GH release than MIA-602 in vitro in cultured rat pituitary cells and in vivo in rats. AVR-352 also demonstrated stronger anti-inflammatory effects in lung granulomas from mice with lung inflammation. Our studies demonstrate the merit of further investigation of AVR GHRH antagonists and support their potential use for clinical therapy of human cancers and other diseases.


Assuntos
Glioblastoma , Neoplasias Pulmonares , Neoplasias Ovarianas , Animais , Anti-Inflamatórios/farmacologia , Apoptose , Linhagem Celular Tumoral , Feminino , Hormônio do Crescimento , Hormônio Liberador de Hormônio do Crescimento , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Camundongos Nus , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Ratos , Sermorelina/metabolismo , Sermorelina/farmacologia
16.
Biomed Pharmacother ; 146: 112554, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34923341

RESUMO

Colorectal cancer (CRC) is an aggressive tumor in which new treatment options deliver negative results on cure rates and long-term survival. The anticancer effects of growth hormone-releasing hormone (GHRH) antagonists have been reported in various experimental tumors, but their activity in CRC is unknown. In the present study, we demonstrated that chronic treatment with GHRH antagonist of MIAMI class, MIA-690, promoted survival and gradually blunted tumor progression in experimentally induced colitis-associated cancer in mice, paralleled by reduced inflammation in colon tissue. In particular, MIA-690 improved disease activity index score, and reduced loss of weight and mortality, by improving the survival rates, compared with vehicle-treated group. MIA-690 was also found to reduce various inflammatory and oxidative markers, such as serotonin, prostaglandin (PG)E2 and 8-iso-PGF2α levels, as well as COX-2, iNOS, TNF-α, IL-6 and NF-kB gene expression. Moreover, MIA-690 inhibited the protein expression of c-Myc, P-AKT and Bcl-2 and upregulated p53 protein expression. In conclusion, we showed that MIA-690 suppresses CRC progression and growth by reducing inflammatory and oxidative markers and modulating apoptotic and oncogenic pathways. Further investigations are required for translating these findings into the clinics.


Assuntos
Neoplasias Colorretais , Hormônio Liberador de Hormônio do Crescimento , Animais , Masculino , Camundongos , Apoptose/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Regulação para Baixo , Hormônio Liberador de Hormônio do Crescimento/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Distribuição Aleatória , Regulação para Cima
17.
Eur Urol Open Sci ; 28: 52-61, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34337526

RESUMO

BACKGROUND: Androgen deprivation therapy (ADT) for prostate cancer with luteinizing hormone-releasing hormone (LHRH) agonists can be improved. OBJECTIVE: To assess safety, the frequency and severity of hot flushes (HFs), bone health, and antitumor effects of high-dose estetrol (HDE4) when combined with ADT. DESIGN SETTING AND PARTICIPANTS: A phase II, double-blind, randomized, placebo-controlled study was conducted in advanced prostate cancer patients requiring ADT (the PCombi study). INTERVENTION: Patients receiving LHRH agonist treatment were randomized 2:1 to 40 mg HDE4 (n = 41) or placebo (n = 21) cotreatment for 24 wk. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Coprimary endpoints were frequency/severity of HFs and levels of total and free testosterone (T). Secondary endpoints included assessments of bone metabolism (osteocalcin and type I collagen telopeptide [CTX1]), prostate-specific antigen (PSA), and follicle-stimulating hormone (FSH). Efficacy analysis was based on the selected per-protocol (PP) population. RESULTS AND LIMITATIONS: Of 62 patients included in the study, 57 were suitable for a PP analysis (37 HDE4; 20 placebo). No E4-related serious cardiovascular adverse events occurred at 24 wk. Weekly HFs were reported by 13.5% of patients with HDE4 and 60.0% with placebo (p < 0.001). Daily HFs occurred in 5.9% versus 55%. Bone turnover parameters decreased significantly with HDE4 (p < 0.0001). Total and free T decreased earlier (p < 0.05), and free T was suppressed further (p < 0.05). PSA suppression was more profound and earlier (p < 0.005). FSH levels were suppressed by 98% versus 57% (p < 0.0001). Estrogenic side effects were nipple sensitivity (34%) and gynecomastia (17%). CONCLUSIONS: HDE4 cotreatment of ADT patients with advanced prostate cancer was well tolerated, and no treatment-related cardiovascular adverse events were observed at 24 wk. HFs and bone turnover were substantially reduced. Suppression of free T, PSA, and FSH was more rapid and profound, suggesting enhanced disease control by HDE4 cotreatment. Larger and longer-lasting studies are needed to confirm the results of the study reported here. PATIENT SUMMARY: Cotreatment of androgen deprivation therapy with high-dose estetrol in advanced prostate cancer patients results in fewer occurrences of hot flushes, bone protection, and other antitumor benefits. Nipple sensitivity and gynecomastia may occur as side effects.

18.
Cancers (Basel) ; 13(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34439107

RESUMO

Pituitary adenomas (PAs) are intracranial tumors, often associated with excessive hormonal secretion and severe comorbidities. Some patients are resistant to medical therapies; therefore, novel treatment options are needed. Antagonists of growth hormone-releasing hormone (GHRH) exert potent anticancer effects, and early GHRH antagonists were found to inhibit GHRH-induced secretion of pituitary GH in vitro and in vivo. However, the antitumor role of GHRH antagonists in PAs is largely unknown. Here, we show that the GHRH antagonists of MIAMI class, MIA-602 and MIA-690, inhibited cell viability and growth and promoted apoptosis in GH/prolactin-secreting GH3 PA cells transfected with human GHRH receptor (GH3-GHRHR), and in adrenocorticotropic hormone ACTH-secreting AtT20 PA cells. GHRH antagonists also reduced the expression of proteins involved in tumorigenesis and cancer progression, upregulated proapoptotic molecules, and lowered GHRH receptor levels. The combination of MIA-690 with temozolomide synergistically blunted the viability of GH3-GHRHR and AtT20 cells. Moreover, MIA-690 reduced both basal and GHRH-induced secretion of GH and intracellular cAMP levels. Finally, GHRH antagonists inhibited cell viability in human primary GH- and ACTH-PA cell cultures. Overall, our results suggest that GHRH antagonists, either alone or in combination with pharmacological treatments, may be considered for further development as therapy for PAs.

19.
J Cell Physiol ; 236(12): 8197-8207, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34224586

RESUMO

Age-related diseases such as cardiovascular diseases portend disability, increase health expenditures, and cause late-life mortality. Synthetic agonists of growth hormone-releasing hormone (GHRH) exhibit several favorable effects on heart function and remodeling. Here we assessed whether GHRH agonist MR409 can modulate heart function and systemic parameters in old mice. Starting at the age of 15 months, mice were injected subcutaneously with MR409 (10 µg/day, n = 8) or vehicle (n = 7) daily for 6 months. Mice treated with MR409 showed improvements in exercise activity, cardiac function, survival rate, immune function, and hair growth in comparison with the controls. More stem cell colonies were grown out of the bone marrow recovered from the MR409-treated mice. Mitochondrial functions of cardiomyocytes (CMs) from the MR409-treated mice were also significantly improved with more mitochondrial fusion. Fewer ß-gal positive cells were observed in endothelial cells after 10 passages with MR409. In Doxorubicin-treated H9C2 cardiomyocytes, cell senescence marker p21 and reactive oxygen species were significantly reduced after cultured with MR409. MR409 also improved cellular ATP production and oxygen consumption rate in Doxorubicin-treated H9C2 cells. Mitochondrial protein OPA1 long isoform was significantly increased after treatment with MR409. The effects of MR409 were mediated by GHRH receptor and protein kinase A (PKA). In short, GHRH agonist MR409 reversed the aging-associated changes with respect of heart function, mobility, hair growth, cellular energy production, and senescence biomarkers. The improvement of heart function may be related to a better mitochondrial functions through GHRH receptor/cAMP/PKA/OPA1 signaling pathway and relieved cardiac inflammation.


Assuntos
Células Endoteliais/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Receptores de Neuropeptídeos/agonistas , Receptores de Hormônios Reguladores de Hormônio Hipofisário/agonistas , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células Endoteliais/metabolismo , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
Mol Cell Endocrinol ; 535: 111379, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34252492

RESUMO

The endoplasmic reticulum (ER) stress is one of the mechanisms related to decreased insulin secretion and beta cell death, contributing to the progress of type 2 diabetes mellitus (T2D). Thus, investigating agents that can influence this process would help prevent the development of T2D. Recently, the growth-hormone-releasing hormone (GHRH) action has been demonstrated in INS-1E cells, in which it increases cell proliferation and insulin secretion. As the effects of GHRH and its agonists have not been fully elucidated in the beta cell, we proposed to investigate them by evaluating the role of the GHRH agonist, MR-409, in cells under ER stress. Our results show that the agonist was unable to ameliorate or prevent ER stress. However, cells exposed to the agonist showed less oxidative stress and greater survival even under ER stress. The mechanisms by which GHRH agonist, MR-409, leads to these outcomes require further investigation.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Indóis/efeitos adversos , Células Secretoras de Insulina/citologia , Sermorelina/análogos & derivados , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Hormônio Liberador de Hormônio do Crescimento/agonistas , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Sermorelina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA