Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Immunol ; 14: 886601, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36960058

RESUMO

Introduction: Pulmonary fibrosis is a destructive, progressive disease that dramatically reduces life quality of patients, ultimately leading to death. Therapeutic regimens for pulmonary fibrosis have shown limited benefits, hence justifying the efforts to evaluate the outcome of alternative treatments. Methods: Using a mouse model of bleomycin (BLM)-induced lung fibrosis, in the current work we asked whether treatment with pro-resolution molecules, such as pro-resolving lipid mediators (SPMs) could ameliorate pulmonary fibrosis. To this end, we injected aspirin-triggered resolvin D1 (7S,8R,17R-trihydroxy-4Z,9E,11E,13Z,15E19Z-docosahexaenoic acid; ATRvD1; i.v.) 7 and 10 days after BLM (intratracheal) challenge and samples were two weeks later. Results and discussion: Assessment of outcome in the lung tissues revealed that ATRvD1 partially restored lung architecture, reduced leukocyte infiltration, and inhibited formation of interstitial edema. In addition, lung tissues from BLM-induced mice treated with ATRvD1 displayed reduced levels of TNF-α, MCP-1, IL-1-ß, and TGF-ß. Of further interest, ATRvD1 decreased lung tissue expression of MMP-9, without affecting TIMP-1. Highlighting the beneficial effects of ATRvD1, we found reduced deposition of collagen and fibronectin in the lung tissues. Congruent with the anti-fibrotic effects that ATRvD1 exerted in lung tissues, α-SMA expression was decreased, suggesting that myofibroblast differentiation was inhibited by ATRvD1. Turning to culture systems, we next showed that ATRvD1 impaired TGF-ß-induced fibroblast differentiation into myofibroblast. After showing that ATRvD1 hampered extracellular vesicles (EVs) release in the supernatants from TGF-ß-stimulated cultures of mouse macrophages, we verified that ATRvD1 also inhibited the release of EVs in the bronco-alveolar lavage (BAL) fluid of BLM-induced mice. Motivated by studies showing that BLM-induced lung fibrosis is linked to angiogenesis, we asked whether ATRvD1 could blunt BLM-induced angiogenesis in the hamster cheek pouch model (HCP). Indeed, our intravital microscopy studies confirmed that ATRvD1 abrogates BLM-induced angiogenesis. Collectively, our findings suggest that treatment of pulmonary fibrosis patients with ATRvD1 deserves to be explored as a therapeutic option in the clinical setting.


Assuntos
Fibrose Pulmonar , Humanos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Aspirina/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Pulmão/patologia , Bleomicina/farmacologia , Fator de Crescimento Transformador beta/metabolismo
2.
Clin Transl Sci ; 16(4): 631-646, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36631939

RESUMO

The severe acute respiratory syndrome coronavirus 2, the agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic, has spread worldwide since it was first identified in November 2019 in Wuhan, China. Since then, progress in pathogenesis linked severity of this systemic disease to the hyperactivation of network of cytokine-driven pro-inflammatory cascades. Here, we aimed to identify molecular biomarkers of disease severity by measuring the serum levels of inflammatory mediators in a Brazilian cohort of patients with COVID-19 and healthy controls (HCs). Critically ill patients in the intensive care unit were defined as such by dependence on oxygen supplementation (93% intubated and 7% face mask), and computed tomography profiles showing ground-glass opacity pneumonia associated to and high levels of D-dimer. Our panel of mediators included HMGB1, ATP, tissue factor, PGE2 , LTB4 , and cys-LTs. Follow-up studies showed increased serum levels of every inflammatory mediator in patients with COVID-19 as compared to HCs. Originally acting as a transcription factor, HMGB1 acquires pro-inflammatory functions following secretion by activated leukocytes or necrotic tissues. Serum levels of HMGB1 were positively correlated with cys-LTs, D-dimer, aspartate aminotransferase, and alanine aminotransferase. Notably, the levels of the classical alarmin HMGB1 were higher in deceased patients, allowing their discrimination from patients that had been discharged at the early pulmonary and hyperinflammatory phase of COVID-19. In particular, we verified that HMGB1 levels above 125.4 ng/ml is the cutoff that distinguishes patients that are at higher risk of death. In conclusion, we propose the use of serum levels of HMGB1 as a biomarker of severe prognosis of COVID-19.


Assuntos
COVID-19 , Proteína HMGB1 , Humanos , Tromboplastina , COVID-19/diagnóstico , Biomarcadores , Prognóstico , Lipídeos , Trifosfato de Adenosina
4.
J Immunol ; 206(10): 2441-2452, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33941658

RESUMO

Intestinal barrier is essential for dietary products and microbiota compartmentalization and therefore gut homeostasis. When this barrier is broken, cecal content overflows into the peritoneal cavity, leading to local and systemic robust inflammatory response, characterizing peritonitis and sepsis. It has been shown that IL-1ß contributes with inflammatory storm during peritonitis and sepsis and its inhibition has beneficial effects to the host. Therefore, we investigated the mechanisms underlying IL-1ß secretion using a widely adopted murine model of experimental peritonitis. The combined injection of sterile cecal content (SCC) and the gut commensal bacteria Bacteroides fragilis leads to IL-1ß-dependent peritonitis, which was mitigated in mice deficient in NLRP3 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3) inflammasome components. Typically acting as a damage signal, SCC, but not B. fragilis, activates canonical pathway of NLRP3 promoting IL-1ß secretion in vitro and in vivo. Strikingly, absence of fiber in the SCC drastically reduces IL-1ß production, whereas high-fiber SCC conversely increases this response in an NLRP3-dependent manner. In addition, NLRP3 was also required for IL-1ß production induced by purified dietary fiber in primed macrophages. Extending to the in vivo context, IL-1ß-dependent peritonitis was worsened in mice injected with B. fragilis and high-fiber SCC, whereas zero-fiber SCC ameliorates the pathology. Corroborating with the proinflammatory role of dietary fiber, IL-1R-deficient mice were protected from peritonitis induced by B. fragilis and particulate bran. Overall, our study highlights a function, previously unknown, for dietary fibers in fueling peritonitis through NLRP3 activation and IL-1ß secretion outside the gut.


Assuntos
Infecções por Bacteroides/imunologia , Bacteroides fragilis/imunologia , Fibras na Dieta/efeitos adversos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , Peritonite/imunologia , Animais , Infecções por Bacteroides/microbiologia , Dieta , Fibras na Dieta/administração & dosagem , Modelos Animais de Doenças , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Peritonite/microbiologia , Receptores de Interleucina-1/deficiência , Receptores de Interleucina-1/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
5.
Stem Cell Rev Rep ; 17(1): 241-252, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33575962

RESUMO

The global SARS-CoV-2 pandemic starting in 2019 has already reached more than 2.3 million deaths. Despite the scientific community's efforts to investigate the COVID-19 disease, a drug for effectively treating or curing patients yet needs to be discovered. Hematopoietic stem cells (HSC) differentiating into immune cells for defense express COVID-19 entry receptors, and COVID-19 infection hinders their differentiation. The importance of purinergic signaling in HSC differentiation and innate immunity has been recognized. The metabotropic P2Y14 receptor subtype, activated by UDP-glucose, controls HSC differentiation and mobilization. Thereon, the exacerbated activation of blood immune cells amplifies the inflammatory state observed in COVID-19 patients, specially through the continuous release of reactive oxygen species and extracellular neutrophil traps (NETs). Further, the P2Y14 subtype, robustly inhibits the infiltration of neutrophils into various epithelial tissues, including lungs and kidneys. Here we discuss findings suggesting that antagonism of the P2Y14 receptor could prevent the progression of COVID-19-induced systemic inflammation, which often leads to severe illness and death cases. Considering the modulation of neutrophil recruitment of extreme relevance for respiratory distress and lung failure prevention, we propose that P2Y14 receptor inhibition by its selective antagonist PPTN could limit neutrophil recruitment and NETosis, hence limiting excessive formation of oxygen reactive species and proteolytic activation of the kallikrein-kinin system and subsequent bradykinin storm in the alveolar septa of COVID-19 patients.


Assuntos
COVID-19/terapia , Transplante de Células-Tronco Hematopoéticas , Inflamação/terapia , Receptores Purinérgicos P2/genética , Síndrome do Desconforto Respiratório/terapia , Bradicinina/metabolismo , COVID-19/complicações , COVID-19/patologia , COVID-19/virologia , Quimiotaxia/efeitos dos fármacos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/virologia , Humanos , Inflamação/patologia , Inflamação/virologia , Pulmão/patologia , Pulmão/virologia , Neutrófilos/metabolismo , Neutrófilos/patologia , Neutrófilos/virologia , Pandemias , Receptores Purinérgicos P2/efeitos dos fármacos , Síndrome do Desconforto Respiratório/complicações , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/virologia , SARS-CoV-2/patogenicidade
6.
Front Immunol ; 11: 574862, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042157

RESUMO

It is currently believed that innate immunity is unable to prevent the spread of SARS-CoV-2 from the upper airways to the alveoli of high-risk groups of patients. SARS-CoV-2 replication in ACE-2-expressing pneumocytes can drive the diffuse alveolar injury through the cytokine storm and immunothrombosis by upregulating the transcription of chemokine/cytokines, unlike several other respiratory viruses. Here we report histopathology data obtained in post-mortem lung biopsies of COVID-19, showing the increased density of perivascular and septal mast cells (MCs) and IL-4-expressing cells (n = 6), in contrast to the numbers found in pandemic H1N1-induced pneumonia (n = 10) or Control specimens (n = 10). Noteworthy, COVID-19 lung biopsies showed a higher density of CD117+ cells, suggesting that c-kit positive MCs progenitors were recruited earlier to the alveolar septa. These findings suggest that MC proliferation/differentiation in the alveolar septa might be harnessed by the shift toward IL-4 expression in the inflamed alveolar septa. Future studies may clarify whether the fibrin-dependent generation of the hyaline membrane, processes that require the diffusion of procoagulative plasma factors into the alveolar lumen and the endothelial dysfunction, are preceded by MC-driven formation of interstitial edema in the alveolar septa.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Mastócitos/imunologia , Pneumonia Viral/imunologia , Alvéolos Pulmonares/imunologia , Edema Pulmonar/imunologia , Trombose/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19 , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Feminino , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/imunologia , Influenza Humana/patologia , Influenza Humana/virologia , Interleucina-4/imunologia , Masculino , Mastócitos/patologia , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Proteínas Proto-Oncogênicas c-kit/imunologia , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/virologia , Edema Pulmonar/patologia , Edema Pulmonar/virologia , SARS-CoV-2 , Trombose/patologia , Trombose/virologia
7.
Immunobiology ; 224(1): 50-59, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30429052

RESUMO

The Gram-negative bacterium Porphyromonas gingivalis is strongly associated with periodontitis. We previously demonstrated that P2X7 receptor activation by extracellular ATP (eATP) triggers elimination of intracellular pathogens, such as Leishmania amazonensis, Toxoplasma gondii and Chlamydia trachomatis. We also showed that eATP-induced IL-1ß secretion via the P2X7 receptor is impaired by P. gingivalis fimbriae. Furthermore, enhanced P2X7 receptor expression was detected in the maxilla of P. gingivalis-orally infected mice as well as in human periodontitis patients. Here, we examined the effect of P2X7-, caspase-1/11- and IL-1 receptor-mediated responses during P. gingivalis infection. P2X7 receptor played a large role in controlling P. gingivalis infection and P. gingivalis-induced recruitment of inflammatory cells, especially neutrophils. In addition, IL-1ß secretion was detected at different time points only when P2X7 receptor was expressed and in the presence of eATP treatment ex vivo. Activation of P2X7 receptor and IL-1 receptor by eATP and IL-1ß, respectively, promoted P. gingivalis elimination in macrophages. Interestingly, eATP-induced P. gingivalis killing was inhibited by the IL-1 receptor antagonist (IL-1RA), consistent with autocrine activation of the IL-1 receptor for P. gingivalis elimination. In vivo, caspase-1/11 and IL-1 receptor were also required for bacterial clearance, leukocyte recruitment and IL-1ß production after P. gingivalis infection. Our data demonstrate that the P2X7-IL-1 receptor axis activation is required for effective innate immune responses against P. gingivalis infection.


Assuntos
Infecções por Bacteroidaceae/imunologia , Leucócitos/imunologia , Macrófagos/imunologia , Porphyromonas gingivalis/fisiologia , Receptores Purinérgicos P2X7/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Comunicação Autócrina , Caspase 1/genética , Caspase 1/metabolismo , Caspases/genética , Caspases/metabolismo , Caspases Iniciadoras , Movimento Celular , Células Cultivadas , Modelos Animais de Doenças , Humanos , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Receptores Purinérgicos P2X7/genética , Transdução de Sinais
8.
Biomed J ; 41(3): 184-193, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-30080658

RESUMO

BACKGROUND: Fusobacterium nucleatum is a Gram-negative anaerobic bacterium associated with periodontal disease. Some oral bacteria, like Porphyromonas gingivalis, evade the host immune response by inhibiting inflammation. On the other hand, F. nucleatum triggers inflammasome activation and release of danger-associated molecular patterns (DAMPs) in infected gingival epithelial cells. METHODS: In this study, we characterized the pro-inflammatory response to F. nucleatum oral infection in BALB/c mice. Western blots and ELISA were used to measure cytokine and DAMP (HMGB1) levels in the oral cavity after infection. Histology and flow cytometry were used to observe recruitment of immune cells to infected tissue and pathology. RESULTS: Our results show increased expression and production of pro-inflammatory cytokines during infection. Furthermore, we observe that F. nucleatum infection leads to recruitment of macrophages in different tissues of the oral cavity. Infection also contributes to osteoclast recruitment, which could be involved in the observed bone resorption. CONCLUSIONS: Overall, our findings suggest that F. nucleatum infection rapidly induces inflammation, release of DAMPs, and macrophage infiltration in gingival tissues and suggest that osteoclasts may drive bone resorption at early stages of the inflammatory process.


Assuntos
Reabsorção Óssea/etiologia , Polpa Dentária/imunologia , Infecções por Fusobacterium/imunologia , Fusobacterium nucleatum , Macrófagos/fisiologia , Doenças da Boca/imunologia , Animais , Movimento Celular , Citocinas/biossíntese , Citocinas/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Osteoclastos/fisiologia
9.
Curr Opin Hematol ; 25(5): 347-357, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30028741

RESUMO

PURPOSE OF REVIEW: During Chagas disease, Trypanosoma cruzi alternates between intracellular and extracellular developmental forms. After presenting an overview about the roles of the contact system in immunity, I will review experimental studies showing that activation of the kallikrein-kinin system (KKS) translates into mutual benefits to the host/parasite relationship. RECENT FINDINGS: T. cruzi trypomastigotes initiate inflammation by activating tissue-resident innate sentinel cells via the TLR2/CXCR2 pathway. Following neutrophil-evoked microvascular leakage, the parasite's major cysteine protease (cruzipain) cleaves plasma-borne kininogens and complement C5. Tightly regulated by angiotensin-converting enzyme (ACE), kinins and C5a in turn further propagate inflammation via iterative cycles of mast cell degranulation, contact system activation, bradykinin release and activation of endothelial bradykinin B2 receptors (B2R). Recently, studies in the intracardiac model of infection revealed a dichotomic role for bradykinin and endothelin-1: generated upon contact activation (mast cell/KKS pathway), these pro-oedematogenic peptides reciprocally stimulate trypomastigote invasion of heart cells that naturally overexpress B2R and endothelin receptors (ETaR/ETbR). SUMMARY: Studies focusing on the immunopathogenesis of Chagas disease revealed that the contact system plays a dual role in host/parasite balance: T. cruzi co-opts bradykinin-induced plasma leakage as a strategy to increment heart parasitism and increase immune resistance by upregulating type-1 effector T-cell production in secondary lymphoid tissues.


Assuntos
Doença de Chagas/imunologia , Interações Hospedeiro-Parasita/imunologia , Trypanosoma cruzi/fisiologia , Doença de Chagas/parasitologia , Doença de Chagas/patologia , Complemento C5a/imunologia , Endotelina-1/imunologia , Humanos , Imunidade Inata , Calicreínas/imunologia , Cininas/imunologia , Peptidil Dipeptidase A/imunologia , Receptor B2 da Bradicinina/imunologia , Receptor de Endotelina A/imunologia , Receptor de Endotelina B/imunologia , Receptores de Interleucina-8B/imunologia , Receptor 2 Toll-Like/imunologia
10.
Adv Immunol ; 136: 29-84, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28950949

RESUMO

For decades, immunologists have considered the complement system as a paradigm of a proteolytic cascade that, acting cooperatively with the immune system, enhances host defense against infectious organisms. In recent years, advances made in thrombosis research disclosed a functional link between activated neutrophils, monocytes, and platelet-driven thrombogenesis. Forging a physical barrier, the fibrin scaffolds generated by synergism between the extrinsic and intrinsic (contact) pathways of coagulation entrap microbes within microvessels, limiting the systemic spread of infection while enhancing the clearance of pathogens by activated leukocytes. Insight from mice models of thrombosis linked fibrin formation via the intrinsic pathway to the autoactivation of factor XII (FXII) by negatively charged "contact" substances, such as platelet-derived polyphosphates and DNA from neutrophil extracellular traps. Following cleavage by FXIIa, activated plasma kallikrein (PK) initiates inflammation by liberating the nonapeptide bradykinin (BK) from an internal domain of high molecular weight kininogen (HK). Acting as a paracrine mediator, BK induces vasodilation and increases microvascular permeability via activation of endothelial B2R, a constitutively expressed subtype of kinin receptor. During infection, neutrophil-driven extravasation of plasma fuels inflammation via extravascular activation of the kallikrein-kinin system (KKS). Whether liberated by plasma-borne PK, tissue kallikrein, and/or microbial-derived proteases, the short-lived kinins activate immature dendritic cells via B2R, thus linking the infection-associated innate immunity/inflammation to the adaptive arm of immunity. As inflammation persists, a GPI-linked carboxypeptidase M removes the C-terminal arginine from the primary kinin, converting the B2R agonist into a high-affinity ligand for B1R, a GPCR subtype that is transcriptionally upregulated in injured/inflamed tissues. As reviewed here, lessons taken from studies of kinin receptor function in experimental infections have shed light on the complex proteolytic circuits that, acting at the endothelial interface, reciprocally couple immunity to the proinflammatory KKS.


Assuntos
Plaquetas/imunologia , Sistema Calicreína-Cinina , Cininogênio de Alto Peso Molecular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Coagulação Sanguínea , Bradicinina/metabolismo , Permeabilidade da Membrana Celular , Endotélio Vascular/metabolismo , Humanos , Imunidade , Calicreínas/metabolismo , Camundongos , Proteólise , Vasodilatação
11.
Mediators Inflamm ; 2014: 143450, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25294952

RESUMO

Inhibitors of serine peptidases (ISPs) expressed by Leishmania major enhance intracellular parasitism in macrophages by targeting neutrophil elastase (NE), a serine protease that couples phagocytosis to the prooxidative TLR4/PKR pathway. Here we investigated the functional interplay between ISP-expressing L. major and the kallikrein-kinin system (KKS). Enzymatic assays showed that NE inhibitor or recombinant ISP-2 inhibited KKS activation in human plasma activated by dextran sulfate. Intravital microscopy in the hamster cheek pouch showed that topically applied L. major promastigotes (WT and Δisp2/3 mutants) potently induced plasma leakage through the activation of bradykinin B2 receptors (B2R). Next, using mAbs against kininogen domains, we showed that these BK-precursor proteins are sequestered by L. major promastigotes, being expressed at higher % in the Δisp2/3 mutant population. Strikingly, analysis of the role of kinin pathway in the phagocytic uptake of L. major revealed that antagonists of B2R or B1R reversed the upregulated uptake of Δisp2/3 mutants without inhibiting macrophage internalization of WT L. major. Collectively, our results suggest that L. major ISP-2 fine-tunes macrophage phagocytosis by inhibiting the pericellular release of proinflammatory kinins from surface bound kininogens. Ongoing studies should clarify whether L. major ISP-2 subverts TLR4/PKR-dependent prooxidative responses of macrophages by preventing activation of G-protein coupled B2R/B1R.


Assuntos
Bradicinina/metabolismo , Cininogênios/metabolismo , Leishmania major/metabolismo , Macrófagos/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Receptor B1 da Bradicinina/metabolismo , Receptor B2 da Bradicinina/metabolismo , Inibidores de Serina Proteinase/farmacologia , Animais , Bradicinina/análogos & derivados , Bradicinina/farmacologia , Antagonistas de Receptor B2 da Bradicinina/farmacologia , Cricetinae , Humanos , Cininas/metabolismo , Leishmania major/imunologia , Leishmania major/patogenicidade , Elastase de Leucócito/metabolismo , Macrófagos/metabolismo , Masculino
12.
J Immunol ; 193(7): 3613-23, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25187655

RESUMO

Complement and the kallikrein-kinin cascade system are both activated in injured tissues. Little is known about their partnership in the immunopathogenesis of Chagas disease, the chronic infection caused by the intracellular protozoan Trypanosoma cruzi. In this study, we show that pharmacological targeting of the C5a receptor (C5aR) or the bradykinin B2 receptor (B2R) inhibited plasma leakage in hamster cheek pouch topically exposed to tissue culture trypomastigotes (TCTs). Further, angiotensin-converting enzyme inhibitors potentiated TCT-evoked paw edema in BALB/c, C57BL/6, and C5-deficient A/J mice through activation of joint pathways between C5aR/B2R or C3aR/B2R. In addition to generation of C5a and kinins via parasite-derived cruzipain, we demonstrate that macrophages internalize TCTs more efficiently through joint activation of C5aR/B2R. Furthermore, we found that C5aR targeting markedly reduces NO production and intracellular parasitism in macrophages. We then studied the impact of C5aR/B2R cross-talk in TCT infection on the development of adaptive immunity. We found that IL-12p40/70 expression was blunted in splenic dendritic cells by blocking either C5aR or B2R, suggesting that codominant signaling via C5aR and B2R fuels production of the Th1-polarizing cytokine. Finally, we assessed the impact of kinins and C5a liberated in parasite-laden tissues on Th cell differentiation. As predicted, BALB/c mice pretreated with angiotensin-converting enzyme inhibitors potentiated IFN-γ production by Ag-specific T cells via C5aR/B2R cross-talk. Interestingly, we found that B2R targeting upregulated IL-10 secretion, whereas C5aR blockade vigorously stimulated IL-4 production. In summary, we describe a novel pathway by which C5aR/B2R cross-talk couples transendothelial leakage of plasma proteins to the cytokine circuitry that coordinates antiparasite immunity.


Assuntos
Imunidade Adaptativa , Doença de Chagas/imunologia , Imunidade Inata , Receptor da Anafilatoxina C5a/imunologia , Receptor B2 da Bradicinina/imunologia , Células Th1/imunologia , Trypanosoma cruzi/imunologia , Animais , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Doença de Chagas/genética , Doença de Chagas/patologia , Complemento C5a/genética , Complemento C5a/imunologia , Cricetinae , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/imunologia , Citocinas/genética , Citocinas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteínas de Protozoários , Receptor da Anafilatoxina C5a/genética , Receptor B2 da Bradicinina/genética , Células Th1/patologia , Trypanosoma cruzi/genética
13.
J Innate Immun ; 6(6): 831-45, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24925032

RESUMO

Porphyromonas gingivalis is a major contributor to the pathogenesis of periodontitis, an infection-driven inflammatory disease that leads to bone destruction. This pathogen stimulates pro-interleukin (IL)-1ß synthesis but not mature IL-1ß secretion, unless the P2X7 receptor is activated by extracellular ATP (eATP). Here, we investigated the role of P. gingivalis fimbriae in eATP-induced IL-1ß release. Bone marrow-derived macrophages (BMDMs) from wild-type (WT) or P2X7-deficient mice were infected with P. gingivalis (381) or isogenic fimbria-deficient (DPG3) strain with or without subsequent eATP stimulation. DPG3 induced higher IL-1ß secretion after eATP stimulation compared to 381 in WT BMDMs, but not in P2X7-deficient cells. This mechanism was dependent on K(+) efflux and Ca(2+)-independent phospholipase A2 activity. Accordingly, non-fimbriated P. gingivalis failed to inhibit apoptosis via the eATP/P2X7 pathway. Furthermore, P. gingivalis-driven stimulation of IL-1ß was Toll-like receptor 2 and MyD88 dependent, and not associated with fimbria expression. Fimbria-dependent down-modulation of IL-1ß was selective, as levels of other cytokines remained unaffected by P2X7 deficiency. Confocal microscopy demonstrated the presence of discrete P2X7 expression in the absence of P. gingivalis stimulation, which was enhanced by 381-stimulated cells. Notably, DPG3-infected macrophages revealed a distinct pattern of P2X7 receptor expression with a marked focus formation. Collectively, these data demonstrate that eATP-induced IL-1ß secretion is impaired by P. gingivalis fimbriae in a P2X7-dependent manner.


Assuntos
Infecções por Bacteroidaceae/imunologia , Fímbrias Bacterianas/imunologia , Interleucina-1beta/imunologia , Macrófagos/imunologia , Porphyromonas gingivalis/imunologia , Receptores Purinérgicos P2X7/imunologia , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/imunologia , Animais , Infecções por Bacteroidaceae/genética , Infecções por Bacteroidaceae/patologia , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Interleucina-1beta/genética , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , Receptores Purinérgicos P2X7/genética , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia
14.
Arterioscler Thromb Vasc Biol ; 33(12): 2759-70, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24092749

RESUMO

OBJECTIVE: Polyphosphate and heparin are anionic polymers released by activated mast cells and platelets that are known to stimulate the contact pathway of coagulation. These polymers promote both the autoactivation of factor XII and the assembly of complexes containing factor XI, prekallikrein, and high-molecular-weight kininogen. We are searching for salivary proteins from blood-feeding insects that counteract the effect of procoagulant and proinflammatory factors in the host, including elements of the contact pathway. APPROACH AND RESULTS: Here, we evaluate the ability of the sand fly salivary proteins, PdSP15a and PdSP15b, to inhibit the contact pathway by disrupting binding of its components to anionic polymers. We attempt to demonstrate binding of the proteins to polyphosphate, heparin, and dextran sulfate. We also evaluate the effect of this binding on contact pathway reactions. We also set out to determine the x-ray crystal structure of PdSP15b and examine the determinants of relevant molecular interactions. Both proteins bind polyphosphate, heparin, and dextran sulfate with high affinity. Through this mechanism they inhibit the autoactivation of factor XII and factor XI, the reciprocal activation of factor XII and prekallikrein, the activation of factor XI by thrombin and factor XIIa, the cleavage of high-molecular-weight kininogen in plasma, and plasma extravasation induced by polyphosphate. The crystal structure of PdSP15b contains an amphipathic helix studded with basic side chains that forms the likely interaction surface. CONCLUSIONS: The results of these studies indicate that the binding of anionic polymers by salivary proteins is used by blood feeders as an antihemostatic/anti-inflammatory mechanism.


Assuntos
Anticoagulantes/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Sulfato de Dextrana/metabolismo , Heparina/metabolismo , Proteínas de Insetos/farmacologia , Polifosfatos/metabolismo , Psychodidae/química , Saliva/química , Animais , Anticoagulantes/química , Anticoagulantes/isolamento & purificação , Anticoagulantes/metabolismo , Testes de Coagulação Sanguínea , Permeabilidade Capilar/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Fator XIIa/antagonistas & inibidores , Fator XIIa/metabolismo , Fator XIa/antagonistas & inibidores , Fator XIa/metabolismo , Humanos , Proteínas de Insetos/química , Proteínas de Insetos/isolamento & purificação , Proteínas de Insetos/metabolismo , Cininogênio de Alto Peso Molecular/antagonistas & inibidores , Cininogênio de Alto Peso Molecular/metabolismo , Camundongos , Modelos Moleculares , Pré-Calicreína/antagonistas & inibidores , Pré-Calicreína/metabolismo , Conformação Proteica , Relação Estrutura-Atividade , Trombina/metabolismo , Fatores de Tempo
15.
Front Immunol ; 3: 396, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23355836

RESUMO

Chronic chagasic myocarditis (CCM) depends on Trypanosoma cruzi persistence in the myocardium. Studies of the proteolytic mechanisms governing host/parasite balance in peripheral sites of T. cruzi infection revealed that tissue culture trypomastigotes (TCTs) elicit inflammatory edema and stimulate protective type-1 effector T cells through the activation of the kallikrein-kinin system. Molecular studies linked the proinflammatory phenotype of Dm28c TCTs to the synergistic activities of tGPI, a lipid anchor that functions as a Toll-like receptor 2 (TLR2) ligand, and cruzipain, a kinin-releasing cysteine protease. Analysis of the dynamics of inflammation revealed that TCTs activate innate sentinel cells via TLR2, releasing CXC chemokines, which in turn evoke neutrophil/CXCR2-dependent extravasation of plasma proteins, including high molecular weight kininogen (HK), in parasite-laden tissues. Further downstream, TCTs process surface bound HK, liberating lysyl-BK (LBK), which then propagates inflammatory edema via signaling of endothelial G-protein-coupled bradykinin B(2) receptors (BK(2)R). Dm28 TCTs take advantage of the transient availability of infection-promoting peptides (e.g., bradykinin and endothelins) in inflamed tissues to invade cardiovascular cells via interdependent signaling of BKRs and endothelin receptors (ETRs). Herein we present a space-filling model whereby ceramide-enriched endocytic vesicles generated by the sphingomyelinase pathway might incorporate BK(2)R and ETRs, which then trigger Ca(2+)-driven responses that optimize the housekeeping mechanism of plasma membrane repair from cell wounding. The hypothesis predicts that the NF-κB-inducible BKR (BK(1)R) may integrate the multimolecular signaling platforms forged by ceramide rafts, as the chronic myocarditis progresses. Exploited as gateways for parasite invasion, BK(2)R, BK(1)R, ET(A)R, ET(B)R, and other G protein-coupled receptor partners may enable persistent myocardial parasitism in the edematous tissues at expense of adverse cardiac remodeling.

16.
Microvasc Res ; 83(2): 185-93, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22036674

RESUMO

Experiments were designed to determine if the vasodilatory peptides maxadilan and pituitary adenylate cyclase-activating peptide (PACAP-38) may cause plasma leakage through activation of leukocytes and to what extent these effects could be due to PAC1 and CXCR1/2 receptor stimulation. Intravital microscopy of hamster cheek pouches utilizing FITC-dextran and rhodamine, respectively, as plasma and leukocyte markers was used to measure arteriolar diameter, plasma leakage and leukocyte accumulation in a selected area (5mm(2)) representative of the hamster cheek pouch microcirculation. Our studies showed that the sand fly vasodilator maxadilan and PACAP-38 induced arteriolar dilation, leukocyte accumulation and plasma leakage in postcapillary venules. The recombinant mutant of maxadilan M65 and an antagonist of CXCR1/2 receptors, reparixin, and an inhibitor of CD11b/CD18 up-regulation, ropivacaine, inhibited all these effects as induced by maxadilan. Dextran sulfate, a complement inhibitor with heparin-like anti-inflammatory effects, inhibited plasma leakage and leukocyte accumulation but not arteriolar dilation as induced by maxadilan and PACAP-38. In vitro studies with isolated human neutrophils showed that maxadilan is a potent stimulator of neutrophil migration comparable with fMLP and leukotriene B(4) and that M65 and reparixin inhibited such migration. The data suggest that leukocyte accumulation and plasma leakage induced by maxadilan involves a mechanism related to PAC1- and CXCR1/2-receptors on leukocytes and endothelial cells.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Bochecha/irrigação sanguínea , Proteínas de Insetos/farmacologia , Psychodidae , Receptores de Interleucina-8A/efeitos dos fármacos , Receptores de Interleucina-8B/efeitos dos fármacos , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Células Cultivadas , Quimiotaxia de Leucócito/efeitos dos fármacos , Cricetinae , Dextranos/metabolismo , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Corantes Fluorescentes/metabolismo , Humanos , Proteínas de Insetos/genética , Proteínas de Insetos/isolamento & purificação , Microscopia de Fluorescência , Microscopia de Vídeo , Mutação , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Psychodidae/química , Receptores de Interleucina-8A/metabolismo , Receptores de Interleucina-8B/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Proteínas Recombinantes/farmacologia , Rodaminas/metabolismo , Fatores de Tempo , Vasodilatadores/isolamento & purificação , Vênulas/efeitos dos fármacos , Vênulas/metabolismo
17.
Adv Parasitol ; 76: 101-27, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21884889

RESUMO

Acting at the interface between microcirculation and immunity, Trypanosoma cruzi induces modifications in peripheral tissues which translate into mutual benefits to host/parasite balance. In this chapter, we will review evidence linking infection-associated vasculopathy to the proinflammatory activity of a small subset of T. cruzi molecules, namely GPI-linked mucins, cysteine proteases (cruzipain), surface glycoproteins of the trans-sialidase family and/or parasite-derived eicosanoids (thromboxane A(2)). Initial insight into pathogenesis came from research in animal models showing that myocardial fibrosis is worsened as result of endothelin upregulation by infected cardiovascular cells. Paralleling these studies, the kinin system emerged as a proteolytic mechanism that links oedematogenic inflammation to immunity. Analyses of the dynamics of inflammation revealed that tissue culture trypomastigotes elicit interstitial oedema in peripheral sites of infection through synergistic activation of toll-like 2 receptors (TLR2) and G-protein-coupled bradykinin receptors, respectively, engaged by tGPI (TLR2 ligand) and kinin peptides (bradykinin B2 receptors (BK(2)R) ligands) proteolytically generated by cruzipain. Further downstream, kinins stimulate lymph node dendritic cells via G-protein-coupled BK(2)R, thus converting these specialized antigen-presenting cells into T(H)1 inducers. Tightly regulated by angiotensin-converting enzyme, the intact kinins (BK(2)R agonists) may be processed by carboxypeptidase M/N, generating [des-Arg]-kinins, which activates BK(1)R, a subtype of GPCR that is upregulated by cardiovascular cells during inflammation. Ongoing studies may clarify if discrepancies between proinflammatory phenotypes of T. cruzi strains may be ascribed, at least in part, to variable expression of TLR2 ligands and cruzipain isoforms.


Assuntos
Vasos Sanguíneos/patologia , Doença de Chagas/imunologia , Doença de Chagas/patologia , Mediadores da Inflamação/metabolismo , Trypanosoma cruzi/imunologia , Trypanosoma cruzi/patogenicidade , Fatores de Virulência/metabolismo , Animais , Doença de Chagas/parasitologia , Endotelinas/metabolismo , Interações Hospedeiro-Parasita , Humanos , Inflamação/imunologia , Inflamação/parasitologia , Cininas/metabolismo , Redes e Vias Metabólicas , Fatores de Virulência/imunologia
18.
Mem Inst Oswaldo Cruz ; 104 Suppl 1: 187-98, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19753474

RESUMO

Despite the wealth of information generated by trans-disciplinary research in Chagas disease, knowledge about its multifaceted pathogenesis is still fragmented. Here we review the body of experimental studies in animal models supporting the concept that persistent infection by Trypanosoma cruzi is crucial for the development of chronic myocarditis. Complementing this review, we will make an effort to reconcile seemingly contradictory results concerning the immune profiles of chronic patients from Argentina and Brazil. Finally, we will review the results of molecular studies suggesting that parasite-induced inflammation and tissue damage is, at least in part, mediated by the activities of trans-sialidase, mucin-linked lipid anchors (TLR2 ligand) and cruzipain (a kinin-releasing cysteine protease). One hundred years after the discovery of Chagas disease, it is reassuring that basic and clinical research tends to converge, raising new perspectives for the treatment of chronic Chagas disease.


Assuntos
Doença de Chagas/imunologia , Trypanosoma cruzi/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Cardiomiopatia Chagásica/imunologia , Cardiomiopatia Chagásica/parasitologia , Doença de Chagas/parasitologia , Doença Crônica , Modelos Animais de Doenças , Epitopos de Linfócito B/imunologia , Humanos , Receptores de Quimiocinas/imunologia , Trypanosoma cruzi/genética , Trypanosoma cruzi/patogenicidade
19.
J Immunol ; 183(6): 3700-11, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19687097

RESUMO

Porphyromonas gingivalis, a Gram-negative bacterium that causes periodontitis, activates the kinin system via the cysteine protease R-gingipain. Using a model of buccal infection based on P. gingivalis inoculation in the anterior mandibular vestibule, we studied whether kinins released by gingipain may link mucosal inflammation to T cell-dependent immunity through the activation of bradykinin B(2) receptors (B(2)R). Our data show that P. gingivalis W83 (wild type), but not gingipain-deficient mutant or wild-type bacteria pretreated with gingipain inhibitors, elicited buccal edema and gingivitis in BALB/c or C57BL/6 mice. Studies in TLR2(-/-), B(2)R(-/-), and neutrophil-depleted C57BL/6 mice revealed that P. gingivalis induced edema through the sequential activation of TLR2/neutrophils, with the initial plasma leakage being amplified by gingipain-dependent release of vasoactive kinins from plasma-borne kininogens. We then used fimbriae (Fim) Ag as a readout to verify whether activation of the TLR2-->PMN-->B(2)R axis (where PMN is polymorphonuclear neutrophil) at early stages of mucosal infection had impact on adaptive immunity. Analyzes of T cell recall responses indicated that gingipain drives B(2)R-dependent generation of IFN-gamma-producing Fim T cells in submandibular draining lymph nodes of BALB/c and C57BL/6 mice, whereas IL-17-producing Fim T cells were generated only in BALB/c mice. In summary, our studies suggest that two virulence factors, LPS (an atypical TLR2 ligand) and gingipain, forge a trans-cellular cross-talk between TLR2 and B(2)R, thus forming an innate axis that guides the development of Fim-specific T cells in mice challenged intrabuccally by P. gingivalis. Ongoing research may clarify whether kinin-driven modulation of T cell responses may also influence the severity of chronic periodontitis.


Assuntos
Adesinas Bacterianas/metabolismo , Cisteína Endopeptidases/metabolismo , Fímbrias Bacterianas/imunologia , Interferon gama/biossíntese , Interleucina-17/biossíntese , Cininas/metabolismo , Porphyromonas gingivalis/imunologia , Receptor B2 da Bradicinina/metabolismo , Linfócitos T/metabolismo , Receptor 2 Toll-Like/metabolismo , Animais , Cisteína Endopeptidases Gingipaínas , Imunidade , Inflamação , Camundongos , Mucosa Bucal/microbiologia , Mucosa Bucal/patologia , Peptídeo Hidrolases , Transdução de Sinais , Linfócitos T/imunologia
20.
PLoS Negl Trop Dis ; 3(7): e479, 2009 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-19621073

RESUMO

BACKGROUND: Using human brain microvascular endothelial cells (HBMECs) as an in vitro model for how African trypanosomes cross the human blood-brain barrier (BBB) we recently reported that the parasites cross the BBB by generating calcium activation signals in HBMECs through the activity of parasite cysteine proteases, particularly cathepsin L (brucipain). In the current study, we examined the possible role of a class of protease stimulated HBMEC G protein coupled receptors (GPCRs) known as protease activated receptors (PARs) that might be implicated in calcium signaling by African trypanosomes. METHODOLOGY/PRINCIPAL FINDINGS: Using RNA interference (RNAi) we found that in vitro PAR-2 gene (F2RL1) expression in HBMEC monolayers could be reduced by over 95%. We also found that the ability of Trypanosoma brucei rhodesiense to cross F2RL1-silenced HBMEC monolayers was reduced (39%-49%) and that HBMECs silenced for F2RL1 maintained control levels of barrier function in the presence of the parasite. Consistent with the role of PAR-2, we found that HBMEC barrier function was also maintained after blockade of Galpha(q) with Pasteurella multocida toxin (PMT). PAR-2 signaling has been shown in other systems to have neuroinflammatory and neuroprotective roles and our data implicate a role for proteases (i.e. brucipain) and PAR-2 in African trypanosome/HBMEC interactions. Using gene-profiling methods to interrogate candidate HBMEC pathways specifically triggered by brucipain, several pathways that potentially link some pathophysiologic processes associated with CNS HAT were identified. CONCLUSIONS/SIGNIFICANCE: Together, the data support a role, in part, for GPCRs as molecular targets for parasite proteases that lead to the activation of Galpha(q)-mediated calcium signaling. The consequence of these events is predicted to be increased permeability of the BBB to parasite transmigration and the initiation of neuroinflammation, events precursory to CNS disease.


Assuntos
Células Endoteliais/parasitologia , Receptor PAR-2/fisiologia , Trypanosoma brucei rhodesiense/patogenicidade , Animais , Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Linhagem Celular , Inativação Gênica , Humanos , RNA Interferente Pequeno/genética , Receptor PAR-2/antagonistas & inibidores , Receptor PAR-2/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA