Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 98(9): e0117924, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39207134

RESUMO

Cardiovascular manifestations of coronavirus disease 2019 (COVID-19) include myocardial injury, heart failure, and myocarditis and are associated with long-term disability and mortality. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA and antigens are found in the myocardium of COVID-19 patients, and human cardiomyocytes are susceptible to infection in cell or organoid cultures. While these observations raise the possibility that cardiomyocyte infection may contribute to the cardiac sequelae of COVID-19, a causal relationship between cardiomyocyte infection and myocardial dysfunction and pathology has not been established. Here, we generated a mouse model of cardiomyocyte-restricted infection by selectively expressing human angiotensin-converting enzyme 2 (hACE2), the SARS-CoV-2 receptor, in cardiomyocytes. Inoculation of Myh6-Cre Rosa26loxP-STOP-loxP-hACE2 mice with an ancestral, non-mouse-adapted strain of SARS-CoV-2 resulted in viral replication within the heart, accumulation of macrophages, and moderate left ventricular (LV) systolic dysfunction. Cardiac pathology in this model was transient and resolved with viral clearance. Blockade of monocyte trafficking reduced macrophage accumulation, suppressed the development of LV systolic dysfunction, and promoted viral clearance in the heart. These findings establish a mouse model of SARS-CoV-2 cardiomyocyte infection that recapitulates features of cardiac dysfunctions of COVID-19 and suggests that both viral replication and resultant innate immune responses contribute to cardiac pathology.IMPORTANCEHeart involvement after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection occurs in multiple ways and is associated with worse outcomes in coronavirus disease 2019 (COVID-19) patients. It remains unclear if cardiac disease is driven by primary infection of the heart or immune response to the virus. SARS-CoV-2 is capable of entering contractile cells of the heart in a culture dish. However, it remains unclear how such infection affects the function of the heart in the body. Here, we designed a mouse in which only heart muscle cells can be infected with a SARS-CoV-2 strain to study cardiac infection in isolation from other organ systems. In our model, infected mice show viral infection, worse function, and accumulation of immune cells in the heart. A subset of immune cells facilitates such worsening heart function. As this model shows features similar to those observed in patients, it may be useful for understanding the heart disease that occurs as a part of COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Modelos Animais de Doenças , Monócitos , Miócitos Cardíacos , SARS-CoV-2 , Animais , COVID-19/imunologia , COVID-19/virologia , COVID-19/patologia , Camundongos , Miócitos Cardíacos/virologia , Miócitos Cardíacos/patologia , Miócitos Cardíacos/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Monócitos/imunologia , Monócitos/virologia , Humanos , Macrófagos/virologia , Macrófagos/imunologia , Replicação Viral , Miocárdio/patologia , Miocárdio/imunologia , Disfunção Ventricular Esquerda/virologia , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Esquerda/patologia
2.
Nat Neurosci ; 27(8): 1555-1564, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38816530

RESUMO

Neurogenetic disorders, such as neurofibromatosis type 1 (NF1), can cause cognitive and motor impairments, traditionally attributed to intrinsic neuronal defects such as disruption of synaptic function. Activity-regulated oligodendroglial plasticity also contributes to cognitive and motor functions by tuning neural circuit dynamics. However, the relevance of oligodendroglial plasticity to neurological dysfunction in NF1 is unclear. Here we explore the contribution of oligodendrocyte progenitor cells (OPCs) to pathological features of the NF1 syndrome in mice. Both male and female littermates (4-24 weeks of age) were used equally in this study. We demonstrate that mice with global or OPC-specific Nf1 heterozygosity exhibit defects in activity-dependent oligodendrogenesis and harbor focal OPC hyperdensities with disrupted homeostatic OPC territorial boundaries. These OPC hyperdensities develop in a cell-intrinsic Nf1 mutation-specific manner due to differential PI3K/AKT activation. OPC-specific Nf1 loss impairs oligodendroglial differentiation and abrogates the normal oligodendroglial response to neuronal activity, leading to impaired motor learning performance. Collectively, these findings show that Nf1 mutation delays oligodendroglial development and disrupts activity-dependent OPC function essential for normal motor learning in mice.


Assuntos
Aprendizagem , Neurofibromina 1 , Plasticidade Neuronal , Oligodendroglia , Animais , Feminino , Masculino , Camundongos , Diferenciação Celular/fisiologia , Aprendizagem/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/fisiologia , Atividade Motora/genética , Mutação , Neurofibromina 1/genética , Plasticidade Neuronal/fisiologia , Plasticidade Neuronal/genética , Oligodendroglia/metabolismo
3.
Acta Neuropathol Commun ; 10(1): 120, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986378

RESUMO

A major obstacle to identifying improved treatments for pediatric low-grade brain tumors (gliomas) is the inability to reproducibly generate human xenografts. To surmount this barrier, we leveraged human induced pluripotent stem cell (hiPSC) engineering to generate low-grade gliomas (LGGs) harboring the two most common pediatric pilocytic astrocytoma-associated molecular alterations, NF1 loss and KIAA1549:BRAF fusion. Herein, we identified that hiPSC-derived neuroglial progenitor populations (neural progenitors, glial restricted progenitors and oligodendrocyte progenitors), but not terminally differentiated astrocytes, give rise to tumors retaining LGG histologic features for at least 6 months in vivo. Additionally, we demonstrated that hiPSC-LGG xenograft formation requires the absence of CD4 T cell-mediated induction of astrocytic Cxcl10 expression. Genetic Cxcl10 ablation is both necessary and sufficient for human LGG xenograft development, which additionally enables the successful long-term growth of patient-derived pediatric LGGs in vivo. Lastly, MEK inhibitor (PD0325901) treatment increased hiPSC-LGG cell apoptosis and reduced proliferation both in vitro and in vivo. Collectively, this study establishes a tractable experimental humanized platform to elucidate the pathogenesis of and potential therapeutic opportunities for childhood brain tumors.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Células-Tronco Pluripotentes Induzidas , Animais , Astrocitoma/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Criança , Glioma/genética , Glioma/metabolismo , Glioma/terapia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Neuroglia/patologia
4.
Nat Commun ; 13(1): 2785, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589737

RESUMO

Neuronal activity is emerging as a driver of central and peripheral nervous system cancers. Here, we examined neuronal physiology in mouse models of the tumor predisposition syndrome Neurofibromatosis-1 (NF1), with different propensities to develop nervous system cancers. We show that central and peripheral nervous system neurons from mice with tumor-causing Nf1 gene mutations exhibit hyperexcitability and increased secretion of activity-dependent tumor-promoting paracrine factors. We discovered a neurofibroma mitogen (COL1A2) produced by peripheral neurons in an activity-regulated manner, which increases NF1-deficient Schwann cell proliferation, establishing that neurofibromas are regulated by neuronal activity. In contrast, mice with the Arg1809Cys Nf1 mutation, found in NF1 patients lacking neurofibromas or optic gliomas, do not exhibit neuronal hyperexcitability or develop these NF1-associated tumors. The hyperexcitability of tumor-prone Nf1-mutant neurons results from reduced NF1-regulated hyperpolarization-activated cyclic nucleotide-gated (HCN) channel function, such that neuronal excitability, activity-regulated paracrine factor production, and tumor progression are attenuated by HCN channel activation. Collectively, these findings reveal that NF1 mutations act at the level of neurons to modify tumor predisposition by increasing neuronal excitability and activity-regulated paracrine factor production.


Assuntos
Neurofibroma , Neurofibromatose 1 , Glioma do Nervo Óptico , Animais , Humanos , Camundongos , Neurofibroma/patologia , Neurofibromatose 1/genética , Neurofibromina 1/genética , Neurônios/patologia , Glioma do Nervo Óptico/patologia , Sistema Nervoso Periférico/patologia , Células de Schwann/patologia
5.
Neuro Oncol ; 24(1): 14-26, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34043012

RESUMO

BACKGROUND: Emerging insights from numerous laboratories have revealed important roles for nonneoplastic cells in the development and progression of brain tumors. One of these nonneoplastic cellular constituents, glioma-associated microglia (GAM), represents a unique population of brain monocytes within the tumor microenvironment that have been reported to both promote and inhibit glioma proliferation. To elucidate the role of GAM in the setting of low-grade glioma (LGG), we leveraged RNA sequencing meta-analysis, genetically engineered mouse strains, and human biospecimens. METHODS: Publicly available disease-associated microglia (DAM) RNA-seq datasets were used, followed by immunohistochemistry and RNAScope validation. CD11a-deficient mouse microglia were used for in vitro functional studies, while LGG growth in mice was assessed using anti-CD11a neutralizing antibody treatment of Neurofibromatosis type 1 (Nf1) optic glioma mice in vivo. RESULTS: We identified Itgal/CD11a enrichment in GAM relative to other DAM populations, which was confirmed in several independently generated murine models of Nf1 optic glioma. Moreover, ITGAL/CD11A expression was similarly increased in human LGG (pilocytic astrocytoma) specimens from several different datasets, specifically in microglia from these tumors. Using CD11a-knockout mice, CD11a expression was shown to be critical for murine microglia CX3CL1 receptor (Cx3cr1) expression and CX3CL1-directed motility, as well as glioma mitogen (Ccl5) production. Consistent with an instructive role for CD11a+ microglia in stromal control of LGG growth, antibody-mediated CD11a inhibition reduced mouse Nf1 LGG growth in vivo. CONCLUSIONS: Collectively, these findings establish ITGAL/CD11A as a critical microglia regulator of LGG biology relevant to future stroma-targeted brain tumor treatment strategies.


Assuntos
Neoplasias Encefálicas , Neurofibromatose 1 , Glioma do Nervo Óptico , Animais , Neoplasias Encefálicas/genética , Camundongos , Camundongos Endogâmicos C57BL , Microglia , Análise de Sequência de RNA , Microambiente Tumoral
6.
Nature ; 594(7862): 277-282, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34040258

RESUMO

Neurons have recently emerged as essential cellular constituents of the tumour microenvironment, and their activity has been shown to increase the growth of a diverse number of solid tumours1. Although the role of neurons in tumour progression has previously been demonstrated2, the importance of neuronal activity to tumour initiation is less clear-particularly in the setting of cancer predisposition syndromes. Fifteen per cent of individuals with the neurofibromatosis 1 (NF1) cancer predisposition syndrome (in which tumours arise in close association with nerves) develop low-grade neoplasms of the optic pathway (known as optic pathway gliomas (OPGs)) during early childhood3,4, raising  the possibility that postnatal light-induced activity of the optic nerve drives tumour initiation. Here we use an authenticated mouse model of OPG driven by mutations in the neurofibromatosis 1 tumour suppressor gene (Nf1)5 to demonstrate that stimulation of optic nerve activity increases optic glioma growth, and that decreasing visual experience via light deprivation prevents tumour formation and maintenance. We show that the initiation of Nf1-driven OPGs (Nf1-OPGs) depends on visual experience during a developmental period in which Nf1-mutant mice are susceptible to tumorigenesis. Germline Nf1 mutation in retinal neurons results in aberrantly increased shedding of neuroligin 3 (NLGN3) within the optic nerve in response to retinal neuronal activity. Moreover, genetic Nlgn3 loss or pharmacological inhibition of NLGN3 shedding blocks the formation and progression of Nf1-OPGs. Collectively, our studies establish an obligate role for neuronal activity in the development of some types of brain tumours, elucidate a therapeutic strategy to reduce OPG incidence or mitigate tumour progression, and underscore the role of Nf1mutation-mediated dysregulation of neuronal signalling pathways in mouse models of the NF1 cancer predisposition syndrome.


Assuntos
Transformação Celular Neoplásica/genética , Genes da Neurofibromatose 1 , Mutação , Neurofibromina 1/genética , Neurônios/metabolismo , Glioma do Nervo Óptico/genética , Glioma do Nervo Óptico/patologia , Animais , Astrocitoma/genética , Astrocitoma/patologia , Moléculas de Adesão Celular Neuronais/deficiência , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Transformação Celular Neoplásica/efeitos da radiação , Feminino , Mutação em Linhagem Germinativa , Humanos , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos da radiação , Nervo Óptico/citologia , Nervo Óptico/efeitos da radiação , Estimulação Luminosa , Retina/citologia , Retina/efeitos da radiação
7.
Nat Commun ; 10(1): 280, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30655513

RESUMO

Although Zika virus (ZIKV) can be transmitted sexually and cause congenital birth defects, immune control mechanisms in the female reproductive tract (FRT) are not well characterized. Here we show that treatment of primary human vaginal and cervical epithelial cells with interferon (IFN)-α/ß or IFN-λ induces host defense transcriptional signatures and inhibits ZIKV infection. We also assess the effects of IFNs on intravaginal infection of the FRT using ovariectomized mice treated with reproductive hormones. We find that mice receiving estradiol are protected against intravaginal ZIKV infection, independently of IFN-α/ß or IFN-λ signaling. In contrast, mice lacking IFN-λ signaling sustain greater FRT infection when progesterone is administered. Exogenous IFN-λ treatment confers an antiviral effect when mice receive both estradiol and progesterone, but not progesterone alone. Our results identify a hormonal stage-dependent role for IFN-λ in controlling ZIKV infection in the FRT and suggest a path for minimizing sexual transmission of ZIKV in women.


Assuntos
Antivirais/farmacologia , Interleucinas/farmacologia , Doenças Virais Sexualmente Transmissíveis/prevenção & controle , Infecção por Zika virus/prevenção & controle , Zika virus/patogenicidade , Administração Intravaginal , Animais , Antivirais/uso terapêutico , Colo do Útero/citologia , Colo do Útero/virologia , Modelos Animais de Doenças , Células Epiteliais , Estradiol/farmacologia , Feminino , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Humanos , Interferon-alfa/farmacologia , Interferon-alfa/uso terapêutico , Interferon beta/farmacologia , Interferon beta/uso terapêutico , Interleucinas/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Cultura Primária de Células , Progesterona/farmacologia , Doenças Virais Sexualmente Transmissíveis/imunologia , Doenças Virais Sexualmente Transmissíveis/transmissão , Doenças Virais Sexualmente Transmissíveis/virologia , Vagina/citologia , Vagina/virologia , Replicação Viral/efeitos dos fármacos , Zika virus/efeitos dos fármacos , Zika virus/imunologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia
8.
J Invest Dermatol ; 139(1): 202-212, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30030153

RESUMO

The major modifiable risk factor in melanomagenesis is UV exposure and mutagenesis of melanocytes. Other UV-induced events that contribute to early tumorigenesis are poorly understood. Herein we show that the repeated exposure of human primary melanocytes to UVB results in a sustained senescence response, increases in expression of signal transducer and activator of transcription 1, MX1, OAS2, and IRF7 proteins of up to 75-fold, and resistance to subsequent UVB-induced apoptosis. In the setting of UVB-induced DNA damage, we detected time-dependent increases in the release of damage-associated molecular patterns such as high-mobility group box 1 (HMGB1). After intermittent UVB exposure, melanocytes treated with the JAK inhibitor ruxolitinib reduced expression of HMGB1 and MX1 as well as activation of JAK1 (pJAK1) and signal transducer and activator of transcription 1 (pSTAT1). In addition, melanocytes expressing small hairpin RNA selective for the HMGB1 receptor, receptor for advanced glycosylation end product (RAGE), exhibited decreased expression of both HMGB1 and MX1 after UVB exposure. The response of small hairpin RAGE-infected cells to human recombinant HMGB1 was blunted with decreased MX1 expression and JAK activation. Finally, depletion of receptor for advanced glycosylation end product decreased UVB-induced resistance to apoptosis (P < 0.05). These findings highlight a cell autonomous response to UV damage, contribute to their resistance to apoptosis and cell death, and may have implications for early stages of melanoma development.


Assuntos
Apoptose , Regulação Neoplásica da Expressão Gênica , Proteína HMGB1/genética , Melanócitos/metabolismo , Melanoma/genética , Receptor para Produtos Finais de Glicação Avançada/genética , Raios Ultravioleta/efeitos adversos , Dano ao DNA/efeitos da radiação , DNA de Neoplasias/genética , Proteína HMGB1/biossíntese , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Melanócitos/patologia , Melanócitos/efeitos da radiação , Melanoma/metabolismo , Melanoma/patologia , Reação em Cadeia da Polimerase , Receptor para Produtos Finais de Glicação Avançada/biossíntese , Transdução de Sinais
9.
Nat Immunol ; 18(11): 1261-1269, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28945244

RESUMO

The Zika virus (ZIKV) epidemic has resulted in congenital abnormalities in fetuses and neonates. Although some cross-reactive dengue virus (DENV)-specific antibodies can enhance ZIKV infection in mice, those recognizing the DENV E-dimer epitope (EDE) can neutralize ZIKV infection in cell culture. We evaluated the therapeutic activity of human monoclonal antibodies to DENV EDE for their ability to control ZIKV infection in the brains, testes, placentas, and fetuses of mice. A single dose of the EDE1-B10 antibody given 3 d after ZIKV infection protected against lethality, reduced ZIKV levels in brains and testes, and preserved sperm counts. In pregnant mice, wild-type or engineered LALA variants of EDE1-B10, which cannot engage Fcg receptors, diminished ZIKV burden in maternal and fetal tissues, and protected against fetal demise. Because neutralizing antibodies to EDE have therapeutic potential against ZIKV, in addition to their established inhibitory effects against DENV, it may be possible to develop therapies that control disease caused by both viruses.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Vírus da Dengue/imunologia , Epitopos/imunologia , Proteínas do Envelope Viral/imunologia , Infecção por Zika virus/imunologia , Animais , Encéfalo/imunologia , Encéfalo/virologia , Chlorocebus aethiops , Reações Cruzadas/imunologia , Vírus da Dengue/classificação , Vírus da Dengue/metabolismo , Feminino , Feto/imunologia , Feto/virologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Masculino , Camundongos , Testes de Neutralização , Gravidez , Multimerização Proteica/imunologia , Testículo/imunologia , Testículo/virologia , Células Vero , Proteínas do Envelope Viral/química , Carga Viral/imunologia , Zika virus/imunologia , Zika virus/fisiologia , Infecção por Zika virus/virologia
10.
Sci Rep ; 6: 25091, 2016 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-27125896

RESUMO

Maternal metabolic diseases increase offspring risk for low birth weight and cardiometabolic diseases in adulthood. Excess fructose consumption may confer metabolic risks for both women and their offspring. However, the direct consequences of fructose intake per se are unknown. We assessed the impact of a maternal high-fructose diet on the fetal-placental unit in mice in the absence of metabolic syndrome and determined the association between maternal serum fructose and placental uric acid levels in humans. In mice, maternal fructose consumption led to placental inefficiency, fetal growth restriction, elevated fetal serum glucose and triglyceride levels. In the placenta, fructose induced de novo uric acid synthesis by activating the activities of the enzymes AMP deaminase and xanthine oxidase. Moreover, the placentas had increased lipids and altered expression of genes that control oxidative stress. Treatment of mothers with the xanthine oxidase inhibitor allopurinol reduced placental uric acid levels, prevented placental inefficiency, and improved fetal weights and serum triglycerides. Finally, in 18 women delivering at term, maternal serum fructose levels significantly correlated with placental uric acid levels. These findings suggest that in mice, excess maternal fructose consumption impairs placental function via a xanthine oxidase/uric acid-dependent mechanism, and similar effects may occur in humans.


Assuntos
Retardo do Crescimento Fetal/induzido quimicamente , Frutose/sangue , Placenta/metabolismo , Insuficiência Placentária/induzido quimicamente , Ácido Úrico/metabolismo , AMP Desaminase/metabolismo , Alopurinol/administração & dosagem , Alopurinol/farmacologia , Animais , Modelos Animais de Doenças , Feminino , Retardo do Crescimento Fetal/prevenção & controle , Frutose/efeitos adversos , Camundongos , Estresse Oxidativo , Insuficiência Placentária/prevenção & controle , Gravidez , Triglicerídeos/sangue , Xantina Oxidase/antagonistas & inibidores , Xantina Oxidase/metabolismo
11.
Endocrinology ; 157(2): 956-68, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26677880

RESUMO

The most significant increase in metabolic syndrome over the previous decade occurred in women of reproductive age, which is alarming given that metabolic syndrome is associated with reproductive problems including subfertility and early pregnancy loss. Individuals with metabolic syndrome often consume excess fructose, and several studies have concluded that excess fructose intake contributes to metabolic syndrome development. Here, we examined the effects of increased fructose consumption on pregnancy outcomes in mice. Female mice fed a high-fructose diet (HFrD) for 6 weeks developed glucose intolerance and mild fatty liver but did not develop other prominent features of metabolic syndrome such as weight gain, hyperglycemia, and hyperinsulinemia. Upon mating, HFrD-exposed mice had lower pregnancy rates and smaller litters at midgestation than chow-fed controls. To explain this phenomenon, we performed artificial decidualization experiments and found that HFrD consumption impaired decidualization. This appeared to be due to decreased circulating progesterone as exogenous progesterone administration rescued decidualization. Furthermore, HFrD intake was associated with decreased bone morphogenetic protein 2 expression and signaling, both of which were restored by exogenous progesterone. Finally, expression of forkhead box O1 and superoxide dismutase 2 [Mn] proteins were decreased in the uteri of HFrD-fed mice, suggesting that HFrD consumption promotes a prooxidative environment in the endometrium. In summary, these data suggest that excess fructose consumption impairs murine fertility by decreasing steroid hormone synthesis and promoting an adverse uterine environment.


Assuntos
Deciduoma/efeitos dos fármacos , Endométrio/efeitos dos fármacos , Frutose/toxicidade , Tamanho da Ninhada de Vivíparos/efeitos dos fármacos , Taxa de Gravidez , Progesterona/metabolismo , Edulcorantes/toxicidade , Aborto Espontâneo , Animais , Proteína Morfogenética Óssea 2/efeitos dos fármacos , Proteína Morfogenética Óssea 2/metabolismo , Decídua/efeitos dos fármacos , Decídua/metabolismo , Decídua/patologia , Deciduoma/metabolismo , Deciduoma/patologia , Técnicas de Cultura Embrionária , Transferência Embrionária , Endométrio/metabolismo , Endométrio/patologia , Fígado Gorduroso , Feminino , Fertilização in vitro , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/efeitos dos fármacos , Fatores de Transcrição Forkhead/metabolismo , Intolerância à Glucose , Imuno-Histoquímica , Síndrome Metabólica , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Gravidez , Superovulação , Superóxido Dismutase/efeitos dos fármacos , Superóxido Dismutase/metabolismo
12.
J Biol Chem ; 287(50): 42138-49, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23112050

RESUMO

The chloride channel calcium-activated (CLCA) family are secreted proteins that regulate both chloride transport and mucin expression, thus controlling the production of mucus in respiratory and other systems. Accordingly, human CLCA1 is a critical mediator of hypersecretory lung diseases, such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis, that manifest mucus obstruction. Despite relevance to homeostasis and disease, the mechanism of CLCA1 function remains largely undefined. We address this void by showing that CLCA proteins contain a consensus proteolytic cleavage site recognized by a novel zincin metalloprotease domain located within the N terminus of CLCA itself. CLCA1 mutations that inhibit self-cleavage prevent activation of calcium-activated chloride channel (CaCC)-mediated chloride transport. CaCC activation requires cleavage to unmask the N-terminal fragment of CLCA1, which can independently gate CaCCs. Gating of CaCCs mediated by CLCA1 does not appear to involve proteolytic cleavage of the channel because a mutant N-terminal fragment deficient in proteolytic activity is able to induce currents comparable with that of the native fragment. These data provide both a mechanistic basis for CLCA1 self-cleavage and a novel mechanism for regulation of chloride channel activity specific to the mucosal interface.


Assuntos
Canais de Cloreto/metabolismo , Ativação do Canal Iônico/fisiologia , Metaloproteases/metabolismo , Proteólise , Linhagem Celular , Canais de Cloreto/genética , Humanos , Transporte de Íons/fisiologia , Metaloproteases/genética , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA