Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 19(8): 3212-3223, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-29966082

RESUMO

For the efficient treatment of an increasing number of diseases the development of new therapeutics as well as novel drug delivery systems is essential. Such drug delivery systems (DDS) must not only consider biodegradability and protective packaging but must also target and control the release of active substances, which is one of the most important points in DDS application. We highlight the improvement of these key aspects, the increased interaction rate of Layer-by-Layer (LbL) designed microcarriers as a promising DDS after functionalization with vesicular stomatitis virus (VSV). We make use of the unique conformational reversibility of the fusion protein of VSV as a surface functionalization of LbL microcarriers. This reversibility allows for VSV to be used both as a tool for assembly onto the DDS and as an initiator for an efficient cellular uptake. We could show that the evolutionary optimized viral fusion machinery can be successfully combined with a biophysical DDS for optimization of its cellular interaction.


Assuntos
Portadores de Fármacos/química , Vesiculovirus/química , Proteínas Virais de Fusão/química , Animais , Chlorocebus aethiops , Cricetinae , Cricetulus , Dióxido de Silício/química , Células Vero
2.
J Biomed Opt ; 20(9): 098002, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26405823

RESUMO

Protoporphyrin IX (PPIX) produced following the administration of exogenous 5d-aminolevulinic acid is clinically approved for photodynamic therapy and fluorescence-guided resection in various jurisdictions around the world. For both applications, quantification of PPIX forms the basis for accurate therapeutic dose calculation and identification of malignant tissues for resection. While it is well established that the PPIX synthesis and accumulation rates are subject to the cell's biochemical microenvironment, the effect of the physical microenvironment, such as matrix stiffness, has received little attention to date. Here we studied the proliferation rate and PPIX synthesis and accumulation in two glioma cell lines U373 and U118 cultured under five different substrate conditions, including the conventional tissue culture plastic and polyacrylamide gels that simulated tissue stiffness of normal brain (1 kPa) and glioblastoma tumors (12 kPa). We found that the proliferation rate increased with substrate stiffness for both cell lines, but not in a linear fashion. PPIX concentration was significantly higher in cells cultured on tissue-simulating gels than on the much stiffer tissue culture plastic for both cell lines. These findings, albeit preliminary, suggest that the physical microenvironment might be an important determinant of tumor aggressiveness and PPIX synthesis in glioma cells.


Assuntos
Resinas Acrílicas/química , Microambiente Celular/efeitos dos fármacos , Glioblastoma/metabolismo , Glioblastoma/fisiopatologia , Protoporfirinas/metabolismo , Resinas Acrílicas/farmacologia , Contagem de Células , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Elasticidade/efeitos dos fármacos , Glioma/metabolismo , Glioma/fisiopatologia , Humanos , Fotoquimioterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA