Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4833, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844821

RESUMO

Mammalian inner ear hair cell loss leads to permanent hearing and balance dysfunction. In contrast to the cochlea, vestibular hair cells of the murine utricle have some regenerative capacity. Whether human utricular hair cells regenerate in vivo remains unknown. Here we procured live, mature utricles from organ donors and vestibular schwannoma patients, and present a validated single-cell transcriptomic atlas at unprecedented resolution. We describe markers of 13 sensory and non-sensory cell types, with partial overlap and correlation between transcriptomes of human and mouse hair cells and supporting cells. We further uncover transcriptomes unique to hair cell precursors, which are unexpectedly 14-fold more abundant in vestibular schwannoma utricles, demonstrating the existence of ongoing regeneration in humans. Lastly, supporting cell-to-hair cell trajectory analysis revealed 5 distinct patterns of dynamic gene expression and associated pathways, including Wnt and IGF-1 signaling. Our dataset constitutes a foundational resource, accessible via a web-based interface, serving to advance knowledge of the normal and diseased human inner ear.


Assuntos
Regeneração , Análise de Célula Única , Transcriptoma , Humanos , Animais , Regeneração/genética , Camundongos , Sáculo e Utrículo/metabolismo , Sáculo e Utrículo/citologia , Neuroma Acústico/genética , Neuroma Acústico/metabolismo , Neuroma Acústico/patologia , Orelha Interna/metabolismo , Orelha Interna/citologia , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/genética , Masculino , Células Ciliadas Vestibulares/metabolismo , Feminino , Perfilação da Expressão Gênica
2.
Dev Cell ; 59(2): 280-291.e5, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38128539

RESUMO

Hearing loss is a chronic disease affecting millions of people worldwide, yet no restorative treatment options are available. Although non-mammalian species can regenerate their auditory sensory hair cells, mammals cannot. Birds retain facultative stem cells known as supporting cells that engage in proliferative regeneration when surrounding hair cells die. Here, we investigated gene expression changes in chicken supporting cells during auditory hair cell death. This identified a pathway involving the receptor F2RL1, HBEGF, EGFR, and ERK signaling. We propose a cascade starting with the proteolytic activation of F2RL1, followed by matrix-metalloprotease-mediated HBEGF shedding, and culminating in EGFR-mediated ERK signaling. Each component of this cascade is essential for supporting cell S-phase entry in vivo and is integral for hair cell regeneration. Furthermore, STAT3-phosphorylation converges with this signaling toward upregulation of transcription factors ATF3, FOSL2, and CREM. Our findings could provide a basis for designing treatments for hearing and balance disorders.


Assuntos
Células Ciliadas Auditivas , Perda Auditiva , Humanos , Animais , Transdução de Sinais/fisiologia , Galinhas/metabolismo , Perda Auditiva/metabolismo , Receptores ErbB/metabolismo , Mamíferos/metabolismo
3.
Cell Rep ; 40(13): 111432, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36170825

RESUMO

The avian utricle, a vestibular organ of the inner ear, displays turnover of sensory hair cells throughout life. This is in sharp contrast to the mammalian utricle, which shows limited regenerative capacity. Here, we use single-cell RNA sequencing to identify distinct marker genes for the different sensory hair cell subtypes of the chicken utricle, which we validated in situ. We provide markers for spatially distinct supporting cell populations and identify two transitional cell populations of dedifferentiating supporting cells and developing hair cells. Trajectory reconstruction resulted in an inventory of gene expression dynamics of natural hair cell generation in the avian utricle.


Assuntos
Células Ciliadas Auditivas , Sáculo e Utrículo , Animais , Galinhas , Células Epiteliais , Mamíferos
4.
PLoS Biol ; 19(11): e3001445, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34758021

RESUMO

Cochlear supporting cells (SCs) are glia-like cells critical for hearing function. In the neonatal cochlea, the greater epithelial ridge (GER) is a mitotically quiescent and transient organ, which has been shown to nonmitotically regenerate SCs. Here, we ablated Lgr5+ SCs using Lgr5-DTR mice and found mitotic regeneration of SCs by GER cells in vivo. With lineage tracing, we show that the GER houses progenitor cells that robustly divide and migrate into the organ of Corti to replenish ablated SCs. Regenerated SCs display coordinated calcium transients, markers of the SC subtype inner phalangeal cells, and survive in the mature cochlea. Via RiboTag, RNA-sequencing, and gene clustering algorithms, we reveal 11 distinct gene clusters comprising markers of the quiescent and damaged GER, and damage-responsive genes driving cell migration and mitotic regeneration. Together, our study characterizes GER cells as mitotic progenitors with regenerative potential and unveils their quiescent and damaged translatomes.


Assuntos
Linhagem da Célula/genética , Cóclea/citologia , Estudos de Associação Genética , Mitose , Biossíntese de Proteínas , Regeneração/genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Diferenciação Celular , Sobrevivência Celular , Células Epiteliais/citologia , Regulação da Expressão Gênica , Integrases/metabolismo , Camundongos , Família Multigênica , Receptores Acoplados a Proteínas G/metabolismo
5.
Cell Rep ; 34(3): 108646, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33472062

RESUMO

In mammals, hearing loss is irreversible due to the lack of regenerative potential of non-sensory cochlear cells. Neonatal cochlear cells, however, can grow into organoids that harbor sensory epithelial cells, including hair cells and supporting cells. Here, we purify different cochlear cell types from neonatal mice, validate the composition of the different groups with single-cell RNA sequencing (RNA-seq), and assess the various groups' potential to grow into inner ear organoids. We find that the greater epithelial ridge (GER), a transient cell population that disappears during post-natal cochlear maturation, harbors the most potent organoid-forming cells. We identified three distinct GER cell groups that correlate with a specific spatial distribution of marker genes. Organoid formation was synergistically enhanced when the cells were cultured at increasing density. This effect is not due to diffusible signals but requires direct cell-to-cell contact. Our findings improve the development of cell-based assays to study culture-generated inner ear cell types.


Assuntos
Cóclea/fisiologia , Células Epiteliais/metabolismo , Organoides/metabolismo , Animais , Células Progenitoras Linfoides , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA