Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 196: 502-513, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29329082

RESUMO

In recent decades the embryo of Gallus g. domesticus has been widely used as a model for the study of early sexual development and the potential impact of substances affecting development, including endocrine disrupting chemicals (EDCs). Since there is no standardized procedure available for experiments with the chicken embryo, the objective of our project is to expedite the protocol to assess the potential effects of EDCs on early sexual differentiation. The main aim of the present study was to systematically investigate the natural variability of individual developmental and histological key parameters in untreated and solvent-treated control groups, since this has been insufficiently addressed so far. A further aim was to provide robust values for all parameters investigated in control and substance experiments, using two known estrogenic compounds, bisphenol A (75/150/300 µg/g egg) and 17α-ethinylestradiol (20 ng/g egg). On embryonic day 1 eggs were injected with the estrogenic compounds. On embryonic day 19 histological gonadal data as well as morphological parameters were noted. In baseline experiments with control groups the selected endpoints showed reproducible results with low variabilities. Furthermore, gonadal endpoints responded sensitively to the treatment with the two model EDCs. Thus, these endpoints are recommended for the assessment of suspected EDCs in which the values provided for all parameters can serve as validity criteria in future experiments. The embryo of G. domesticus has shown to be a suitable alternative to currently accepted mammalian bioassays for the impact assessment of EDCs on reproductive tissues.


Assuntos
Disruptores Endócrinos/análise , Estrogênios/análise , Animais , Compostos Benzidrílicos/análise , Compostos Benzidrílicos/farmacologia , Embrião de Galinha , Disruptores Endócrinos/farmacologia , Estrogênios/farmacologia , Etinilestradiol/análise , Etinilestradiol/farmacologia , Feminino , Gônadas/efeitos dos fármacos , Masculino , Mamíferos , Modelos Animais , Fenóis/análise , Fenóis/farmacologia , Reprodução/efeitos dos fármacos , Diferenciação Sexual/efeitos dos fármacos
2.
Artigo em Inglês | MEDLINE | ID: mdl-25052703

RESUMO

Alternative polyadenylation (APA) is a widespread mechanism that contributes to the sophisticated dynamics of gene regulation. Approximately 50% of all protein-coding human genes harbor multiple polyadenylation (PA) sites; their selective and combinatorial use gives rise to transcript variants with differing length of their 3' untranslated region (3'UTR). Shortened variants escape UTR-mediated regulation by microRNAs (miRNAs), especially in cancer, where global 3'UTR shortening accelerates disease progression, dedifferentiation and proliferation. Here we present APADB, a database of vertebrate PA sites determined by 3' end sequencing, using massive analysis of complementary DNA ends. APADB provides (A)PA sites for coding and non-coding transcripts of human, mouse and chicken genes. For human and mouse, several tissue types, including different cancer specimens, are available. APADB records the loss of predicted miRNA binding sites and visualizes next-generation sequencing reads that support each PA site in a genome browser. The database tables can either be browsed according to organism and tissue or alternatively searched for a gene of interest. APADB is the largest database of APA in human, chicken and mouse. The stored information provides experimental evidence for thousands of PA sites and APA events. APADB combines 3' end sequencing data with prediction algorithms of miRNA binding sites, allowing to further improve prediction algorithms. Current databases lack correct information about 3'UTR lengths, especially for chicken, and APADB provides necessary information to close this gap. Database URL: http://tools.genxpro.net/apadb/.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , MicroRNAs , Poliadenilação , Animais , Galinhas , Sistemas de Gerenciamento de Base de Dados , Humanos , Camundongos , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA