Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
N Engl J Med ; 387(23): 2113-2125, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36477031

RESUMO

BACKGROUND: Immune checkpoint inhibitors and targeted therapies have dramatically improved outcomes in patients with advanced melanoma, but approximately half these patients will not have a durable benefit. Phase 1-2 trials of adoptive cell therapy with tumor-infiltrating lymphocytes (TILs) have shown promising responses, but data from phase 3 trials are lacking to determine the role of TILs in treating advanced melanoma. METHODS: In this phase 3, multicenter, open-label trial, we randomly assigned patients with unresectable stage IIIC or IV melanoma in a 1:1 ratio to receive TIL or anti-cytotoxic T-lymphocyte antigen 4 therapy (ipilimumab at 3 mg per kilogram of body weight). Infusion of at least 5×109 TILs was preceded by nonmyeloablative, lymphodepleting chemotherapy (cyclophosphamide plus fludarabine) and followed by high-dose interleukin-2. The primary end point was progression-free survival. RESULTS: A total of 168 patients (86% with disease refractory to anti-programmed death 1 treatment) were assigned to receive TILs (84 patients) or ipilimumab (84 patients). In the intention-to-treat population, median progression-free survival was 7.2 months (95% confidence interval [CI], 4.2 to 13.1) in the TIL group and 3.1 months (95% CI, 3.0 to 4.3) in the ipilimumab group (hazard ratio for progression or death, 0.50; 95% CI, 0.35 to 0.72; P<0.001); 49% (95% CI, 38 to 60) and 21% (95% CI, 13 to 32) of the patients, respectively, had an objective response. Median overall survival was 25.8 months (95% CI, 18.2 to not reached) in the TIL group and 18.9 months (95% CI, 13.8 to 32.6) in the ipilimumab group. Treatment-related adverse events of grade 3 or higher occurred in all patients who received TILs and in 57% of those who received ipilimumab; in the TIL group, these events were mainly chemotherapy-related myelosuppression. CONCLUSIONS: In patients with advanced melanoma, progression-free survival was significantly longer among those who received TIL therapy than among those who received ipilimumab. (Funded by the Dutch Cancer Society and others; ClinicalTrials.gov number, NCT02278887.).


Assuntos
Imunoterapia Adotiva , Linfócitos do Interstício Tumoral , Melanoma , Humanos , Terapia Baseada em Transplante de Células e Tecidos , Ipilimumab/efeitos adversos , Melanoma/tratamento farmacológico
2.
Nat Commun ; 11(1): 1128, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32111832

RESUMO

The sterol-regulatory element binding proteins (SREBP) are central transcriptional regulators of lipid metabolism. Using haploid genetic screens we identify the SREBP Regulating Gene (SPRING/C12ORF49) as a determinant of the SREBP pathway. SPRING is a glycosylated Golgi-resident membrane protein and its ablation in Hap1 cells, Hepa1-6 hepatoma cells, and primary murine hepatocytes reduces SREBP signaling. In mice, Spring deletion is embryonic lethal yet silencing of hepatic Spring expression also attenuates the SREBP response. Mechanistically, attenuated SREBP signaling in SPRINGKO cells results from reduced SREBP cleavage-activating protein (SCAP) and its mislocalization to the Golgi irrespective of the cellular sterol status. Consistent with limited functional SCAP in SPRINGKO cells, reintroducing SCAP restores SREBP-dependent signaling and function. Moreover, in line with the role of SREBP in tumor growth, a wide range of tumor cell lines display dependency on SPRING expression. In conclusion, we identify SPRING as a previously unrecognized modulator of SREBP signaling.


Assuntos
Colesterol/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Animais , Linhagem Celular , Desenvolvimento Embrionário/genética , Retículo Endoplasmático/metabolismo , Expressão Gênica , Complexo de Golgi/metabolismo , Haploidia , Hepatócitos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Ligação a Elemento Regulador de Esterol/genética
3.
Atherosclerosis ; 281: 137-142, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30658189

RESUMO

BACKGROUND AND AIMS: Cholesterol is an essential lipid for cellular function and membrane integrity, and hence its cellular levels and distribution must be tightly regulated. Biosynthesis of cholesterol is ramped when its cellular levels are low. Herein, the ER-resident and rate-limiting enzymes 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and squalene monooxygenase (SQLE) play a prominent role. We have recently reported that MARCH6, an E3 ubiquitin ligase, specifically promotes cholesterol-stimulated ubiquitylation and subsequent proteasomal degradation of SQLE, but not of HMGCR. To further delineate how post-translational regulation of SQLE and HMGCR is differentially achieved, we hypothesized that their sterol-dependent degradation machinery makes use of distinct E2 ubiquitin conjugating enzymes. METHODS: To study this possibility, we therefore used a CRISPR/Cas9-based approach to screen for ER-associated degradation (ERAD)-associated E2 enzymes that are essential for MARCH6-dependent degradation of SQLE. RESULTS: We report here the identification of UBE2J2 as the primary E2 ubiquitin conjugating enzyme essential for this process in mammalian cells, in contrast to UBE2G2, which is essential for sterol-stimulated degradation of HMGCR. We demonstrate that ablating UBE2J2 disturbs cholesterol-accelerated SQLE degradation in multiple human cell types, including cells of hepatic origin, and that the ability of UBE2J2 to support SQLE degradation critically depends on its enzymatic activity. CONCLUSIONS: Our findings establish UBE2J2 as an important partner of MARCH6 in cholesterol-stimulated degradation of SQLE, thereby contributing to the complex regulation of cellular cholesterol homeostasis.


Assuntos
Colesterol/biossíntese , Hepatócitos/enzimologia , Hidroximetilglutaril-CoA Redutases/metabolismo , Proteínas de Membrana/metabolismo , Esqualeno Mono-Oxigenase/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Estabilidade Enzimática , Células HEK293 , Células Hep G2 , Humanos , Proteínas de Membrana/genética , Proteólise , Fatores de Tempo , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
4.
Arterioscler Thromb Vasc Biol ; 37(11): 2064-2074, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28882874

RESUMO

OBJECTIVE: The cellular demand for cholesterol requires control of its biosynthesis by the mevalonate pathway. Regulation of HMGCR (3-hydroxy-3-methylglutaryl coenzyme A reductase), a rate-limiting enzyme in this pathway and the target of statins, is a key control point herein. Accordingly, HMGCR is subject to negative and positive regulation. In particular, the ability of oxysterols and intermediates of the mevalonate pathway to stimulate its proteasomal degradation is an exquisite example of metabolically controlled feedback regulation. To define the genetic determinants that govern this process, we conducted an unbiased haploid mammalian genetic screen. APPROACH AND RESULTS: We generated human haploid cells with mNeon fused to endogenous HMGCR using CRISPR/Cas9 and used these cells to interrogate regulation of HMGCR abundance in live cells. This resulted in identification of known and new regulators of HMGCR, and among the latter, UBXD8 (ubiquitin regulatory X domain-containing protein 8), a gene that has not been previously implicated in this process. We demonstrate that UBXD8 is an essential determinant of metabolically stimulated degradation of HMGCR and of cholesterol biosynthesis in multiple cell types. Accordingly, UBXD8 ablation leads to aberrant cholesterol synthesis due to loss of feedback control. Mechanistically, we show that UBXD8 is necessary for sterol-stimulated dislocation of ubiquitylated HMGCR from the endoplasmic reticulum membrane en route to proteasomal degradation, a function dependent on its UBX domain. CONCLUSIONS: We establish UBXD8 as a previously unrecognized determinant that couples flux across the mevalonate pathway to control of cholesterol synthesis and demonstrate the feasibility of applying mammalian haploid genetics to study metabolic traits.


Assuntos
Proteínas Sanguíneas/metabolismo , Colesterol/biossíntese , Haploidia , Hidroximetilglutaril-CoA Redutases/metabolismo , Proteínas de Membrana/metabolismo , Animais , Proteínas Sanguíneas/genética , Sistemas CRISPR-Cas , Retículo Endoplasmático/enzimologia , Estabilidade Enzimática , Retroalimentação Fisiológica , Regulação Enzimológica da Expressão Gênica , Células Hep G2 , Hepatócitos/enzimologia , Humanos , Hidroximetilglutaril-CoA Redutases/genética , Proteínas de Membrana/genética , Ácido Mevalônico/metabolismo , Microscopia Confocal , Complexo de Endopeptidases do Proteassoma/metabolismo , Transporte Proteico , Proteólise , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Transfecção , Ubiquitinação
5.
PLoS One ; 12(2): e0170268, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28207759

RESUMO

Deficiency of glucocerebrosidase (GBA) causes Gaucher disease (GD). In the common non-neuronopathic GD type I variant, glucosylceramide accumulates primarily in the lysosomes of visceral macrophages. Supplementing storage cells with lacking enzyme is accomplished via chronic intravenous administration of recombinant GBA containing mannose-terminated N-linked glycans, mediating the selective uptake by macrophages expressing mannose-binding lectin(s). Two recombinant GBA preparations with distinct N-linked glycans are registered in Europe for treatment of type I GD: imiglucerase (Genzyme), contains predominantly Man(3) glycans, and velaglucerase (Shire PLC) Man(9) glycans. Activity-based probes (ABPs) enable fluorescent labeling of recombinant GBA preparations through their covalent attachment to the catalytic nucleophile E340 of GBA. We comparatively studied binding and uptake of ABP-labeled imiglucerase and velaglucerase in isolated dendritic cells, cultured human macrophages and living mice, through simultaneous detection of different GBAs by paired measurements. Uptake of ABP-labeled rGBAs by dendritic cells was comparable, as well as the bio-distribution following equimolar intravenous administration to mice. ABP-labeled rGBAs were recovered largely in liver, white-blood cells, bone marrow and spleen. Lungs, brain and skin, affected tissues in severe GD types II and III, were only poorly supplemented. Small, but significant differences were noted in binding and uptake of rGBAs in cultured human macrophages, in the absence and presence of mannan. Mannan-competed binding and uptake were largest for velaglucerase, when determined with single enzymes or as equimolar mixtures of both enzymes. Vice versa, imiglucerase showed more prominent binding and uptake not competed by mannan. Uptake of recombinant GBAs by cultured macrophages seems to involve multiple receptors, including several mannose-binding lectins. Differences among cells from different donors (n = 12) were noted, but the same trends were always observed. Our study suggests that further insight in targeting and efficacy of enzyme therapy of individual Gaucher patients could be obtained by the use of recombinant GBA, trace-labeled with an ABP, preferably equipped with an infrared fluorophore or other reporter tag suitable for in vivo imaging.


Assuntos
Células Dendríticas/enzimologia , Corantes Fluorescentes/química , Glucosilceramidase/metabolismo , Macrófagos/enzimologia , Monócitos/enzimologia , Animais , Benzofuranos/química , Células Cultivadas , Imunofluorescência , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polissacarídeos/metabolismo
6.
Arterioscler Thromb Vasc Biol ; 37(3): 423-432, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28082258

RESUMO

OBJECTIVE: The sterol-responsive nuclear receptors, liver X receptors α (LXRα, NR1H3) and ß (LXRß, NR1H2), are key determinants of cellular cholesterol homeostasis. LXRs are activated under conditions of high cellular sterol load and induce expression of the cholesterol efflux transporters ABCA1 and ABCG1 to promote efflux of excess cellular cholesterol. However, the full set of genes that contribute to LXR-stimulated cholesterol efflux is unknown, and their identification is the objective of this study. APPROACH AND RESULTS: We systematically compared the global transcriptional response of macrophages to distinct classes of LXR ligands. This allowed us to identify both common and ligand-specific transcriptional responses in macrophages. Among these, we identified endonuclease-exonuclease-phosphatase family domain containing 1 (EEPD1/KIAA1706) as a direct transcriptional target of LXRs in human and murine macrophages. EEPD1 specifically localizes to the plasma membrane owing to the presence of a myristoylation site in its N terminus. Accordingly, the first 10 amino acids of EEPD1 are sufficient to confer plasma membrane localization in the context of a chimeric protein with GFP. Functionally, we report that silencing expression of EEPD1 blunts maximal LXR-stimulated Apo AI-dependent efflux and demonstrate that this is the result of reduced abundance of ABCA1 protein in human and murine macrophages. CONCLUSIONS: In this study, we identify EEPD1 as a novel LXR-regulated gene in macrophages and propose that it promotes cellular cholesterol efflux by controlling cellular levels and activity of ABCA1.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membrana Celular/enzimologia , Colesterol/metabolismo , Endodesoxirribonucleases/metabolismo , Receptores X do Fígado/metabolismo , Macrófagos/enzimologia , Transportador 1 de Cassete de Ligação de ATP/genética , Animais , Apolipoproteína A-I/metabolismo , Transporte Biológico , Células COS , Membrana Celular/efeitos dos fármacos , Chlorocebus aethiops , Endodesoxirribonucleases/genética , Perfilação da Expressão Gênica/métodos , Regulação Enzimológica da Expressão Gênica , Células HeLa , Células Hep G2 , Humanos , Ligantes , Receptores X do Fígado/agonistas , Receptores X do Fígado/deficiência , Receptores X do Fígado/genética , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células RAW 264.7 , Interferência de RNA , Transcriptoma , Transfecção
7.
FEBS Lett ; 590(6): 716-25, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26898341

RESUMO

Glycosphingoid bases are elevated in inherited lysosomal storage disorders with deficient activity of glycosphingolipid catabolizing glycosidases. We investigated the molecular basis of the formation of glucosylsphingosine and globotriaosylsphingosine during deficiency of glucocerebrosidase (Gaucher disease) and α-galactosidase A (Fabry disease). Independent genetic and pharmacological evidence is presented pointing to an active role of acid ceramidase in both processes through deacylation of lysosomal glycosphingolipids. The potential pathophysiological relevance of elevated glycosphingoid bases generated through this alternative metabolism in patients suffering from lysosomal glycosidase defects is discussed.


Assuntos
Ceramidase Ácida/metabolismo , Doença de Fabry/metabolismo , Doença de Gaucher/metabolismo , Glicoesfingolipídeos/metabolismo , Ceramidase Ácida/genética , Acilação , Animais , Modelos Animais de Doenças , Doença de Fabry/genética , Feminino , Doença de Gaucher/genética , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Glicoesfingolipídeos/química , Células HEK293 , Humanos , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Knockout , alfa-Galactosidase/genética , alfa-Galactosidase/metabolismo
8.
Circ Res ; 118(2): 222-9, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26582775

RESUMO

RATIONALE: The (pro)renin receptor ([P]RR) interacts with (pro)renin at concentrations that are >1000× higher than observed under (patho)physiological conditions. Recent studies have identified renin-angiotensin system-independent functions for (P)RR related to its association with the vacuolar H(+)-ATPase. OBJECTIVE: To uncover renin-angiotensin system-independent functions of the (P)RR. METHODS AND RESULTS: We used a proteomics-based approach to purify and identify (P)RR-interacting proteins. This resulted in identification of sortilin-1 (SORT1) as a high-confidence (P)RR-interacting protein, a finding which was confirmed by coimmunoprecipitation of endogenous (P)RR and SORT1. Functionally, silencing (P)RR expression in hepatocytes decreased SORT1 and low-density lipoprotein (LDL) receptor protein abundance and, as a consequence, resulted in severely attenuated cellular LDL uptake. In contrast to LDL, endocytosis of epidermal growth factor or transferrin remained unaffected by silencing of the (P)RR. Importantly, reduction of LDL receptor and SORT1 protein abundance occurred in the absence of changes in their corresponding transcript level. Consistent with a post-transcriptional event, degradation of the LDL receptor induced by (P)RR silencing could be reversed by lysosomotropic agents, such as bafilomycin A1. CONCLUSIONS: Our study identifies a renin-angiotensin system-independent function for the (P)RR in the regulation of LDL metabolism by controlling the levels of SORT1 and LDL receptor.


Assuntos
Endocitose , Hepatócitos/metabolismo , Lipoproteínas LDL/metabolismo , Proteômica , Receptores de Superfície Celular/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Células CHO , Imunoprecipitação da Cromatina , Cricetulus , Células HEK293 , Células Hep G2 , Humanos , Processamento de Proteína Pós-Traducional , Proteólise , Proteômica/métodos , Interferência de RNA , Receptores de Superfície Celular/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo , Transfecção , ATPases Vacuolares Próton-Translocadoras/genética
9.
J Lipid Res ; 55(1): 138-45, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24212238

RESUMO

Lysosomal integral membrane protein-2 (LIMP2) mediates trafficking of glucocerebrosidase (GBA) to lysosomes. Deficiency of LIMP2 causes action myoclonus-renal failure syndrome (AMRF). LIMP2-deficient fibroblasts virtually lack GBA like the cells of patients with Gaucher disease (GD), a lysosomal storage disorder caused by mutations in the GBA gene. While GD is characterized by the presence of glucosylceramide-laden macrophages, AMRF patients do not show these. We studied the fate of GBA in relation to LIMP2 deficiency by employing recently designed activity-based probes labeling active GBA molecules. We demonstrate that GBA is almost absent in lysosomes of AMRF fibroblasts. However, white blood cells contain considerable amounts of residual enzyme. Consequently, AMRF patients do not acquire lipid-laden macrophages and do not show increased plasma levels of macrophage markers, such as chitotriosidase, in contrast to GD patients. We next investigated the consequences of LIMP2 deficiency with respect to plasma glycosphingolipid levels. Plasma glucosylceramide concentration was normal in the AMRF patients investigated as well as in LIMP2-deficient mice. However, a marked increase in the sphingoid base, glucosylsphingosine, was observed in AMRF patients and LIMP2-deficient mice. Our results suggest that combined measurements of chitotriosidase and glucosylsphingosine can be used for convenient differential laboratory diagnosis of GD and AMRF.


Assuntos
Epilepsias Mioclônicas Progressivas/diagnóstico , Animais , Células Cultivadas , Ensaios Enzimáticos , Fibroblastos/enzimologia , Imunofluorescência , Corantes Fluorescentes/química , Glucosilceramidase/metabolismo , Glucosilceramidas/metabolismo , Humanos , Leucócitos/enzimologia , Proteínas de Membrana Lisossomal/deficiência , Macrófagos/enzimologia , Camundongos , Epilepsias Mioclônicas Progressivas/enzimologia , Psicosina/análogos & derivados , Psicosina/metabolismo , Receptores Depuradores/deficiência
10.
Angew Chem Int Ed Engl ; 51(50): 12529-33, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23139194

RESUMO

A high-end label: Cyclophellitol aziridine-type activity-based probes allow for ultra-sensitive visualization of mammalian ß-glucosidases (GBA1, GBA2, GBA3, and LPH) as well as several non-mammalian ß-glucosidases (see picture). These probes offer new ways to study ß-exoglucosidases, and configurational isomers of the cyclophellitol aziridine core may give activity-based probes targeting other retaining glycosidase families.


Assuntos
Celulases/metabolismo , Corantes Fluorescentes/química , Animais , Aziridinas/química , Encéfalo/enzimologia , Celulases/antagonistas & inibidores , Celulases/genética , Cicloexanóis/química , Cicloexanóis/metabolismo , Células Hep G2 , Humanos , Isomerismo , Camundongos , Proteômica , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
11.
Blood ; 118(16): e118-27, 2011 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-21868580

RESUMO

Gaucher disease, caused by a deficiency of the lysosomal enzyme glucocerebrosidase, leads to prominent glucosylceramide accumulation in lysosomes of tissue macrophages (Gaucher cells). Here we show glucosylsphingosine, the deacylated form of glucosylceramide, to be markedly increased in plasma of symptomatic nonneuronopathic (type 1) Gaucher patients (n = 64, median = 230.7 nM, range 15.6-1035.2 nM; normal (n = 28): median 1.3 nM, range 0.8-2.7 nM). The method developed for mass spectrometric quantification of plasma glucosylsphingosine is sensitive and robust. Plasma glucosylsphingosine levels correlate with established plasma markers of Gaucher cells, chitotriosidase (ρ = 0.66) and CCL18 (ρ = 0.40). Treatment of Gaucher disease patients by supplementing macrophages with mannose-receptor targeted recombinant glucocerebrosidase results in glucosylsphingosine reduction, similar to protein markers of Gaucher cells. Since macrophages prominently accumulate the lysoglycosphingolipid on glucocerebrosidase inactivation, Gaucher cells seem a major source of the elevated plasma glucosylsphingosine. Our findings show that plasma glucosylsphingosine can qualify as a biomarker for type 1 Gaucher disease, but that further investigations are warranted regarding its relationship with clinical manifestations of Gaucher disease.


Assuntos
Doença de Gaucher/sangue , Doença de Gaucher/tratamento farmacológico , Glucosilceramidase/uso terapêutico , Psicosina/análogos & derivados , Quimiocinas CC/sangue , Terapia de Reposição de Enzimas , Terapia Enzimática , Feminino , Doença de Gaucher/enzimologia , Doença de Gaucher/genética , Genótipo , Glucosilceramidase/genética , Hexosaminidases/sangue , Humanos , Macrófagos/citologia , Masculino , Fenótipo , Psicosina/sangue , Proteínas Recombinantes/genética , Proteínas Recombinantes/uso terapêutico , Espectrometria de Massas por Ionização por Electrospray
12.
FEBS Lett ; 584(14): 3165-9, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20541547

RESUMO

Human phagocyte-specific chitotriosidase is part of innate immunity and shows anti-fungal activity towards chitin-containing fungi. We investigated the effect of stimulation of the C-type lectin receptor dectin-1 by beta-1,3-glucan (curdlan) on chitotriosidase expression and release by human phagocytes. We observed that curdlan triggers chitotriosidase release from human neutrophils. In addition, we show that curdlan impairs chitotriosidase induction in monocytes. Finally, curdlan temporarily induces chitotriosidase in enzyme-expressing monocyte-derived macrophages, followed by reduction of chitotriosidase expression after prolonged stimulation. These data on regulation of phagocyte-specific chitotriosidase following curdlan recognition support an important role of chitotriosidase in the elimination of chitin-containing pathogens.


Assuntos
Macrófagos/imunologia , Diferenciação Celular/imunologia , Quitina/imunologia , Quitina/metabolismo , Quitina/farmacologia , Hexosaminidases , Humanos , Imunidade Inata , Lectinas Tipo C/imunologia , Lectinas Tipo C/metabolismo , Macrófagos/metabolismo , Proteínas de Membrana , Monócitos/imunologia , Monócitos/metabolismo , Proteínas do Tecido Nervoso , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fagócitos/imunologia , Fagócitos/metabolismo , beta-Glucanas
13.
Hepatology ; 49(2): 637-45, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19072830

RESUMO

UNLABELLED: Recent reports indicate that glycosphingolipids play an important role in regulation of carbohydrate metabolism. We have shown that the iminosugar N-(5'-adamantane-1'-yl-methoxy)-pentyl-1-deoxynojirimycin (AMP-DNM), an inhibitor of the enzyme glucosylceramide synthase, is a potent enhancer of insulin signaling in rodent models for insulin resistance and type 2 diabetes. In this study, we determined whether AMP-DNM also affects lipid homeostasis and, in particular, the reverse cholesterol transport pathway. Treatment of C57BL/6J mice with AMP-DNM for 5 weeks decreased plasma levels of triglycerides and cholesterol by 35%, whereas neutral sterol excretion increased twofold. Secretion of biliary lipid also increased twofold, which resulted in a similar rise in bile flow. This effect was not due to altered expression levels or kinetics of the various export pumps involved in bile formation. However, the bile salt pool size increased and the expression of Cyp7A1 was up-regulated. In vitro experiments using HepG2 hepatoma cell line revealed this to be due to inhibition of fibroblast growth factor-19 (FGF19)-mediated suppression of Cyp7A1 via the FGF receptor. CONCLUSION: Pharmacological modulation of glycosphingolipid metabolism showed surprising effects on lipid homeostasis in C57BL/6J mice. Upon administration of 100 mg AMP-DNM/kg body weight/day, plasma cholesterol and triglyceride levels decreased, biliary lipid secretion doubled and also the endpoint of reverse cholesterol transport, neutral sterol excretion, doubled.


Assuntos
Bile/metabolismo , Vesícula Biliar/metabolismo , Glicoesfingolipídeos/biossíntese , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/farmacologia , Adamantano/análogos & derivados , Adamantano/farmacologia , Animais , Linhagem Celular Tumoral , Células Cultivadas , Colesterol/sangue , HDL-Colesterol/metabolismo , Vesícula Biliar/fisiologia , Gangliosídeos/fisiologia , Glicoesfingolipídeos/antagonistas & inibidores , Humanos , Metabolismo dos Lipídeos , Lipoproteínas HDL/metabolismo , Neoplasias Hepáticas , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , Transdução de Sinais , Triglicerídeos/sangue
14.
J Pharmacol Exp Ther ; 326(3): 849-55, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18550691

RESUMO

Recent findings have implicated glycosphingolipids as modulators of insulin receptor activity. Studies with C57BL/6J ob/ob mice have shown that insulin sensitivity is enhanced by the synthetic hydrophobic iminosugar N-(5-adamantane-1-yl-methoxy-pentyl)-deoxynojirimycin (AMP-DNM) that inhibits glucosylceramide synthase. Here, we treated the liver hepatoma cell line HepG2 with AMP-DNM, resulting in a 70% reduction of glycosphingolipids, and we analyzed the effect on gene expression. Using whole human genome 44K oligonucleotide arrays, we identified 89 genes that were significantly (p < 0.01) up- or down-regulated by AMP-DNM treatment. Of the 56 up-regulated genes, 17 were direct target genes for transcription factors sterol regulatory element-binding protein (SREBP) 1 or SREBP2, which activate genes in the sterol biosynthesis pathway. An increase in cholesterol production rate confirmed that the induction of SREBP target genes seen at the mRNA level resulted in activation of the cholesterol biosynthesis pathway. It is interesting to note that the cholesterol content of the cells did not increase. It is noteworthy that no effects were found on expression of genes related to cell receptor signaling pathways, neither on toxicity nor cell growth. Our findings indicate that inhibition of glucosylceramide synthase with AMP-DNM leads to activation of SREBP target genes and synthesis of cholesterol in HepG2 cells.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Adamantano/análogos & derivados , Colesterol/biossíntese , Regulação Enzimológica da Expressão Gênica/fisiologia , Glucosiltransferases/antagonistas & inibidores , Proteínas de Ligação a Elemento Regulador de Esterol/biossíntese , Proteínas de Ligação a Elemento Regulador de Esterol/genética , 1-Desoxinojirimicina/farmacologia , Adamantano/farmacologia , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glucosiltransferases/metabolismo , Humanos
15.
FEBS Lett ; 581(28): 5389-95, 2007 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-17976376

RESUMO

Human chitotriosidase is specifically expressed by phagocytes, has anti-fungal activity towards chitin-containing fungi in vitro and in vivo, and is part of innate immunity. We studied the effect of toll-like receptor (TLR)- and nucleotide-binding oligomerization domain (NOD)-2 triggering on chitotriosidase expression and release by phagocytes. We find that TLR, but not NOD2 activation, regulates chitotriosidase release by neutrophils. Furthermore, both TLR and NOD2 activation resulted in diminished induction by monocytes. Lastly, NOD2 activation, but not TLR stimulation, induces chitinase expression in macrophages. We conclude that phagocyte-specific regulation is important for efficient eradication of chitin-containing pathogens.


Assuntos
Hexosaminidases/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Fagócitos/enzimologia , Receptores Toll-Like/metabolismo , Acetilmuramil-Alanil-Isoglutamina/farmacologia , Células Cultivadas , Humanos , Ligantes , Macrófagos/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/enzimologia , Neutrófilos/metabolismo , Peptidoglicano/farmacologia , Transdução de Sinais/efeitos dos fármacos
16.
Metabolism ; 56(3): 314-9, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17292718

RESUMO

Gaucher disease (glucocerebrosidase deficiency) is characterized by massive accumulation of lipid-laden macrophages in various tissues. Patients with Gaucher disease show a hitherto unexplained increase in hepatic glucose output. Because adiponectin is thought to influence hepatic glucose output, we studied its serum concentration in a cohort of patients with Gaucher disease. Serum adiponectin was indeed found to be markedly reduced in patients (median value, 3.1 microg/mL; range, 1.4-6.3 microg/mL) as compared with healthy subjects (median value 5.6 microg/mL range, 1.9-14.0 microg/mL). Successful treatment of patients was accompanied by an increase in serum adiponectin, from 3.1 to 3.6 microg/mL (P = .002). In healthy individuals, low levels of circulating adiponectin are generally associated with obesity. In patients with Gaucher disease, however, adiponectin levels did not correlate with body mass index. The hypoadiponectinemia in Gaucher patients is most likely attributable to their low-grade chronic inflammation. The characteristic storage macrophages produce inflammatory cytokines such as tumor necrosis factor alpha that is known to suppress adiponectin production. It is of interest that the very low adiponectin levels in Gaucher patients are not accompanied by hyperglycemia, contrary to their effect in obese individuals. It is hypothesized that the excessive hepatic glucose production in these patients balances the assumed increased glucose consumption by the massive amounts of storage macrophages. Hypoadiponectemia may play a regulatory role in preventing hypoglycemia in this condition.


Assuntos
Doença de Gaucher/sangue , Hiperglicemia/prevenção & controle , Adiponectina/sangue , Adulto , Índice de Massa Corporal , Feminino , Doença de Gaucher/tratamento farmacológico , Glucosilceramidase/uso terapêutico , Humanos , Masculino , Pessoa de Meia-Idade , Isoformas de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA