Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 71: 101705, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36907508

RESUMO

OBJECTIVE: In brown adipose tissue (iBAT), the balance between lipid/glucose uptake and lipolysis is tightly regulated by insulin signaling. Downstream of the insulin receptor, PDK1 and mTORC2 phosphorylate AKT, which activates glucose uptake and lysosomal mTORC1 signaling. The latter requires the late endosomal/lysosomal adaptor and MAPK and mTOR activator (LAMTOR/Ragulator) complex, which serves to translate the nutrient status of the cell to the respective kinase. However, the role of LAMTOR in metabolically active iBAT has been elusive. METHODS: Using an AdipoqCRE-transgenic mouse line, we deleted LAMTOR2 (and thereby the entire LAMTOR complex) in adipose tissue (LT2 AKO). To examine the metabolic consequences, we performed metabolic and biochemical studies in iBAT isolated from mice housed at different temperatures (30 °C, room temperature and 5 °C), after insulin treatment, or in fasted and refed condition. For mechanistic studies, mouse embryonic fibroblasts (MEFs) lacking LAMTOR 2 were analyzed. RESULTS: Deletion of the LAMTOR complex in mouse adipocytes resulted in insulin-independent AKT hyperphosphorylation in iBAT, causing increased glucose and fatty acid uptake, which led to massively enlarged lipid droplets. As LAMTOR2 was essential for the upregulation of de novo lipogenesis, LAMTOR2 deficiency triggered exogenous glucose storage as glycogen in iBAT. These effects are cell autonomous, since AKT hyperphosphorylation was abrogated by PI3K inhibition or by deletion of the mTORC2 component Rictor in LAMTOR2-deficient MEFs. CONCLUSIONS: We identified a homeostatic circuit for the maintenance of iBAT metabolism that links the LAMTOR-mTORC1 pathway to PI3K-mTORC2-AKT signaling downstream of the insulin receptor.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Receptor de Insulina , Camundongos , Animais , Receptor de Insulina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tecido Adiposo Marrom/metabolismo , Fibroblastos/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Insulina/metabolismo , Camundongos Transgênicos , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Nutrientes , Homeostase , Glucose/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas/metabolismo
2.
Cells ; 12(3)2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36766683

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the most common liver pathology worldwide. In mice and humans, NAFLD progression is characterized by the appearance of TREM2-expressing macrophages in the liver. However, their mechanistic contributions to disease progression have not been completely elucidated. Here, we show that TREM2+ macrophages prevent the generation of a pro-inflammatory response elicited by LPS-laden lipoproteins in vitro. Further, Trem2 expression regulates bone-marrow-derived macrophages (BMDMs) and Kupffer cell capacity to phagocyte apoptotic cells in vitro, which is dependent on CD14 activation. In line with this, loss of Trem2 resulted in an increased pro-inflammatory response, which ultimately aggravated liver fibrosis in murine models of NAFLD. Similarly, in a human NAFLD cohort, plasma levels of TREM2 were increased and hepatic TREM2 expression was correlated with higher levels of liver triglycerides and the acquisition of a fibrotic gene signature. Altogether, our results suggest that TREM2+ macrophages have a protective function during the progression of NAFLD, as they are involved in the processing of pro-inflammatory lipoproteins and phagocytosis of apoptotic cells and, thereby, are critical contributors for the re-establishment of liver homeostasis.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Cirrose Hepática/patologia , Macrófagos/metabolismo , Apoptose , Glicoproteínas de Membrana/genética , Receptores Imunológicos
3.
Cell Metab ; 33(3): 547-564.e7, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33357458

RESUMO

In response to cold exposure, thermogenic adipocytes internalize large amounts of fatty acids after lipoprotein lipase-mediated hydrolysis of triglyceride-rich lipoproteins (TRL) in the capillary lumen of brown adipose tissue (BAT) and white adipose tissue (WAT). Here, we show that in cold-exposed mice, vascular endothelial cells in adipose tissues endocytose substantial amounts of entire TRL particles. These lipoproteins subsequently follow the endosomal-lysosomal pathway, where they undergo lysosomal acid lipase (LAL)-mediated processing. Endothelial cell-specific LAL deficiency results in impaired thermogenic capacity as a consequence of reduced recruitment of brown and brite/beige adipocytes. Mechanistically, TRL processing by LAL induces proliferation of endothelial cells and adipocyte precursors via beta-oxidation-dependent production of reactive oxygen species, which in turn stimulates hypoxia-inducible factor-1α-dependent proliferative responses. In conclusion, this study demonstrates a physiological role for TRL particle uptake into BAT and WAT and establishes endothelial lipoprotein processing as an important determinant of adipose tissue remodeling during thermogenic adaptation.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Lipoproteínas/metabolismo , Lisossomos/metabolismo , Termogênese , Triglicerídeos/metabolismo , Adiponectina/genética , Adiponectina/metabolismo , Tecido Adiposo Marrom/patologia , Tecido Adiposo Branco/patologia , Animais , Antígenos CD36/metabolismo , Diferenciação Celular , Proliferação de Células , Temperatura Baixa , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lipoproteínas/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo , Receptores de Lipoproteínas/genética , Receptores de Lipoproteínas/metabolismo , Esterol Esterase/deficiência , Esterol Esterase/genética , Esterol Esterase/metabolismo , Triglicerídeos/genética
4.
Nutrients ; 12(10)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092056

RESUMO

Dietary fibers are fermented by gut bacteria into the major short chain fatty acids (SCFAs) acetate, propionate, and butyrate. Generally, fiber-rich diets are believed to improve metabolic health. However, recent studies suggest that long-term supplementation with fibers causes changes in hepatic bile acid metabolism, hepatocyte damage, and hepatocellular cancer in dysbiotic mice. Alterations in hepatic bile acid metabolism have also been reported after cold-induced activation of brown adipose tissue. Here, we aim to investigate the effects of short-term dietary inulin supplementation on liver cholesterol and bile acid metabolism in control and cold housed specific pathogen free wild type (WT) mice. We found that short-term inulin feeding lowered plasma cholesterol levels and provoked cholestasis and mild liver damage in WT mice. Of note, inulin feeding caused marked perturbations in bile acid metabolism, which were aggravated by cold treatment. Our studies indicate that even relatively short periods of inulin consumption in mice with an intact gut microbiome have detrimental effects on liver metabolism and function.


Assuntos
Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo , Inulina/efeitos adversos , Fígado/efeitos dos fármacos , Animais , Ácidos e Sais Biliares/sangue , Bilirrubina/sangue , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Colesterol/análise , Colesterol/sangue , Suplementos Nutricionais , Ácidos Graxos Voláteis/metabolismo , Fezes/química , Abrigo para Animais , Inulina/administração & dosagem , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Temperatura
5.
Mol Metab ; 16: 88-99, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30100244

RESUMO

OBJECTIVE: Insulin resistance is associated with impaired receptor dependent hepatic uptake of triglyceride-rich lipoproteins (TRL), promoting hypertriglyceridemia and atherosclerosis. Next to low-density lipoprotein (LDL) receptor (LDLR) and syndecan-1, the LDLR-related protein 1 (LRP1) stimulated by insulin action contributes to the rapid clearance of TRL in the postprandial state. Here, we investigated the hypothesis that the adaptor protein phosphotyrosine interacting domain-containing protein 1 (PID1) regulates LRP1 function, thereby controlling hepatic endocytosis of postprandial lipoproteins. METHODS: Localization and interaction of PID1 and LRP1 in cultured hepatocytes was studied by confocal microscopy of fluorescent tagged proteins, by indirect immunohistochemistry of endogenous proteins, by GST-based pull down and by immunoprecipitation experiments. The in vivo relevance of PID1 was assessed using whole body as well as liver-specific Pid1-deficient mice on a wild type or Ldlr-deficient (Ldlr-/-) background. Intravital microscopy was used to study LRP1 translocation in the liver. Lipoprotein metabolism was investigated by lipoprotein profiling, gene and protein expression as well as organ-specific uptake of radiolabelled TRL. RESULTS: PID1 co-localized in perinuclear endosomes and was found associated with LRP1 under fasting conditions. We identified the distal NPxY motif of the intracellular C-terminal domain (ICD) of LRP1 as the site critical for the interaction with PID1. Insulin-mediated NPxY-phosphorylation caused the dissociation of PID1 from the ICD, causing LRP1 translocation to the plasma membrane. PID1 deletion resulted in higher LRP1 abundance at the cell surface, higher LDLR protein levels and, paradoxically, reduced total LRP1. The latter can be explained by higher receptor shedding, which we observed in cultured Pid1-deficient hepatocytes. Consistently, PID1 deficiency alone led to increased LDLR-dependent endocytosis of postprandial lipoproteins and lower plasma triglycerides. In contrast, hepatic PID1 deletion on an Ldlr-/- background reduced lipoprotein uptake into liver and caused plasma TRL accumulation. CONCLUSIONS: By acting as an insulin-dependent retention adaptor, PID1 serves as a regulator of LRP1 function controlling the disposal of postprandial lipoproteins. PID1 inhibition provides a novel approach to lower plasma levels of pro-atherogenic TRL remnants by stimulating endocytic function of both LRP1 and LDLR in the liver.


Assuntos
Proteínas de Transporte/metabolismo , Hipertrigliceridemia/metabolismo , Lipoproteínas/metabolismo , Triglicerídeos/metabolismo , Animais , Carcinoma Hepatocelular , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Endocitose/fisiologia , Hepatócitos/metabolismo , Humanos , Hipertrigliceridemia/genética , Insulina/metabolismo , Resistência à Insulina/fisiologia , Lipoproteínas/fisiologia , Fígado/metabolismo , Neoplasias Hepáticas , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Período Pós-Prandial , Receptores de LDL/metabolismo , Sinapsinas/metabolismo , Sinapsinas/fisiologia , Triglicerídeos/fisiologia , Proteínas Supressoras de Tumor/metabolismo
6.
Cell Metab ; 28(4): 644-655.e4, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30033199

RESUMO

The coordination of the organ-specific responses regulating systemic energy distribution to replenish lipid stores in acutely activated brown adipose tissue (BAT) remains elusive. Here, we show that short-term cold exposure or acute ß3-adrenergic receptor (ß3AR) stimulation results in secretion of the anabolic hormone insulin. This process is diminished in adipocyte-specific Atgl-/- mice, indicating that lipolysis in white adipose tissue (WAT) promotes insulin secretion. Inhibition of pancreatic ß cells abolished uptake of lipids delivered by triglyceride-rich lipoproteins into activated BAT. Both increased lipid uptake into BAT and whole-body energy expenditure in response to ß3AR stimulation were blunted in mice treated with the insulin receptor antagonist S961 or lacking the insulin receptor in brown adipocytes. In conclusion, we introduce the concept that acute cold and ß3AR stimulation trigger a systemic response involving WAT, ß cells, and BAT, which is essential for insulin-dependent fuel uptake and adaptive thermogenesis.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Temperatura Baixa , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Lipólise/fisiologia , Receptores Adrenérgicos beta 3/metabolismo , Adipócitos Marrons/metabolismo , Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Animais , Dieta Hiperlipídica , Dioxóis/farmacologia , Metabolismo Energético/fisiologia , Lipase/metabolismo , Lipoproteínas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptídeos/farmacologia , Receptor de Insulina/antagonistas & inibidores , Termogênese/fisiologia , Triglicerídeos/metabolismo
7.
Semin Immunopathol ; 40(2): 189-202, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29209828

RESUMO

Adipose tissue has emerged as a major player in driving obesity-related inflammatory response. In obesity, chronic infiltration of macrophages in adipose tissue mediates local and systemic inflammation and acts as a key contributor to insulin resistance. In the past few years, adipose tissue plasticity and remodeling capacity has been studied extensively to develop therapeutic targets to combat obesity and related metabolic dysfunction. Progress in understanding the potential of adipocytes and contribution of macrophages and other immune cells to control immunometabolism in disease state has provided us new potential intervention targets to explore such as the formation of heat-producing beige adipocytes in white adipose tissue and the polarization of macrophages from an inflammatory toward an anti-inflammatory phenotype. Initiation and progression of inflammatory signaling in fat pads is complex, broad, and often functions in a tissue/cell type-specific manner. We have also realized the importance of location, coordinated role of tissue cross-talk, and physiological state of the fat pad in these processes. There has been significant progress in understanding how adipose tissue regulates these crucial processes and maintains metabolic homeostasis such as identification of fat depot-specific regulation of energy metabolism, mediators of macrophage polarization, role of gut-derived antigens, and consequences of diet and calorie restriction on adipose tissue metabolic and thermogenic potential.


Assuntos
Tecido Adiposo/imunologia , Tecido Adiposo/metabolismo , Metabolismo Energético/imunologia , Inflamação/imunologia , Macrófagos/imunologia , Adipócitos/imunologia , Adipócitos/metabolismo , Animais , Humanos , Inflamação/metabolismo , Macrófagos/metabolismo , Obesidade/imunologia , Obesidade/metabolismo
8.
Nat Med ; 23(7): 839-849, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28604703

RESUMO

Adaptive thermogenesis is an energy-demanding process that is mediated by cold-activated beige and brown adipocytes, and it entails increased uptake of carbohydrates, as well as lipoprotein-derived triglycerides and cholesterol, into these thermogenic cells. Here we report that cold exposure in mice triggers a metabolic program that orchestrates lipoprotein processing in brown adipose tissue (BAT) and hepatic conversion of cholesterol to bile acids via the alternative synthesis pathway. This process is dependent on hepatic induction of cytochrome P450, family 7, subfamily b, polypeptide 1 (CYP7B1) and results in increased plasma levels, as well as fecal excretion, of bile acids that is accompanied by distinct changes in gut microbiota and increased heat production. Genetic and pharmacological interventions that targeted the synthesis and biliary excretion of bile acids prevented the rise in fecal bile acid excretion, changed the bacterial composition of the gut and modulated thermogenic responses. These results identify bile acids as important metabolic effectors under conditions of sustained BAT activation and highlight the relevance of cholesterol metabolism by the host for diet-induced changes of the gut microbiota and energy metabolism.


Assuntos
Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo , Temperatura Baixa , Microbioma Gastrointestinal , Termogênese , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Tecido Adiposo Marrom/metabolismo , Alanina Transaminase/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Western Blotting , Calorimetria Indireta , Estudos de Casos e Controles , Família 7 do Citocromo P450/genética , Família 7 do Citocromo P450/metabolismo , Microbioma Gastrointestinal/genética , Perfilação da Expressão Gênica , Humanos , Fígado/metabolismo , Camundongos , Camundongos Knockout , Obesidade , RNA Ribossômico 16S/genética , Receptores de LDL/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esteroide Hidroxilases/genética , Esteroide Hidroxilases/metabolismo , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
9.
Am J Physiol Endocrinol Metab ; 309(12): E968-80, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26487005

RESUMO

In humans and rodents, risk of metabolic syndrome is sexually dimorphic, with an increased incidence in males. Additionally, the protective role of female gonadal hormones is ostensible, as prevalence of type 2 diabetes mellitus (T2DM) increases after menopause. Here, we investigated the influence of estrogen (E2) on the onset of T2DM in female New Zealand obese (NZO) mice. Diabetes prevalence (defined as blood glucose levels >16.6 mmol/l) of NZO females on high-fat diet (60 kcal% fat) in week 22 was 43%. This was markedly dependent on liver fat content in week 10, as detected by computed tomography. Only mice with a liver fat content >9% in week 10 plus glucose levels >10 mmol/l in week 9 developed hyperglycemia by week 22. In addition, at 11 wk, diacylglycerols were elevated in livers of diabetes-prone mice compared with controls. Hepatic expression profiles obtained from diabetes-prone and -resistant mice at 11 wk revealed increased abundance of two transcripts in diabetes-prone mice: Mogat1, which catalyzes the synthesis of diacylglycerols from monoacylglycerol and fatty acyl-CoA, and the fatty acid transporter Cd36. E2 treatment of diabetes-prone mice for 10 wk prevented any further increase in liver fat content and reduced diacylglycerols and the abundance of Mogat1 and Cd36, leading to a reduction of diabetes prevalence and an improved glucose tolerance compared with untreated mice. Our data indicate that early elevation of hepatic Cd36 and Mogat1 associates with increased production and accumulation of triglycerides and diacylglycerols, presumably resulting in reduced hepatic insulin sensitivity and leading to later onset of T2DM.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Estrogênios/farmacologia , Ácidos Graxos/metabolismo , Gordura Intra-Abdominal/metabolismo , Fígado/metabolismo , Obesidade/metabolismo , Animais , Feminino , Gordura Intra-Abdominal/efeitos dos fármacos , Fígado/efeitos dos fármacos , Prevalência , Ratos
10.
Biochim Biophys Acta ; 1851(5): 566-76, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25645620

RESUMO

Caloric restriction and intermittent fasting are known to improve glucose homeostasis and insulin resistance in several species including humans. The aim of this study was to unravel potential mechanisms by which these interventions improve insulin sensitivity and protect from type 2 diabetes. Diabetes-susceptible New Zealand Obese mice were either 10% calorie restricted (CR) or fasted every other day (IF), and compared to ad libitum (AL) fed control mice. AL mice showed a diabetes prevalence of 43%, whereas mice under CR and IF were completely protected against hyperglycemia. Proteomic analysis of hepatic lipid droplets revealed significantly higher levels of PSMD9 (co-activator Bridge-1), MIF (macrophage migration inhibitor factor), TCEB2 (transcription elongation factor B (SIII), polypeptide 2), ACY1 (aminoacylase 1) and FABP5 (fatty acid binding protein 5), and a marked reduction of GSTA3 (glutathione S-transferase alpha 3) in samples of CR and IF mice. In addition, accumulation of diacylglycerols (DAGs) was significantly reduced in livers of IF mice (P=0.045) while CR mice showed a similar tendency (P=0.062). In particular, 9 DAG species were significantly reduced in response to IF, of which DAG-40:4 and DAG-40:7 also showed significant effects after CR. This was associated with a decreased PKCε activation and might explain the improved insulin sensitivity. In conclusion, our data indicate that protection against diabetes upon caloric restriction and intermittent fasting associates with a modulation of lipid droplet protein composition and reduction of intracellular DAG species.


Assuntos
Restrição Calórica , Diabetes Mellitus Tipo 2/prevenção & controle , Diglicerídeos/metabolismo , Jejum , Privação de Alimentos , Gotículas Lipídicas/metabolismo , Fígado/metabolismo , Obesidade/dietoterapia , Proteoma/metabolismo , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/etiologia , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Insulina/sangue , Resistência à Insulina , Masculino , Camundongos Obesos , Músculo Esquelético/metabolismo , Obesidade/sangue , Obesidade/complicações , Oxirredução , Proteína Quinase C-épsilon/metabolismo , Fatores de Tempo
11.
Beilstein J Nanotechnol ; 5: 1432-1440, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25247125

RESUMO

Semiconductor quantum dots (QD) and superparamagnetic iron oxide nanocrystals (SPIO) have exceptional physical properties that are well suited for biomedical applications in vitro and in vivo. For future applications, the direct injection of nanocrystals for imaging and therapy represents an important entry route into the human body. Therefore, it is crucial to investigate biological responses of the body to nanocrystals to avoid harmful side effects. In recent years, we established a system to embed nanocrystals with a hydrophobic oleic acid shell either by lipid micelles or by the amphiphilic polymer poly(maleic anhydride-alt-1-octadecene) (PMAOD). The goal of the current study is to investigate the uptake processes as well as pro-inflammatory responses in the liver after the injection of these encapsulated nanocrystals. By immunofluorescence and electron microscopy studies using wild type mice, we show that 30 min after injection polymer-coated nanocrystals are primarily taken up by liver sinusoidal endothelial cells. In contrast, by using wild type, Ldlr (-/-) as well as Apoe (-/-) mice we show that nanocrystals embedded within lipid micelles are internalized by Kupffer cells and, in a process that is dependent on the LDL receptor and apolipoprotein E, by hepatocytes. Gene expression analysis of pro-inflammatory markers such as tumor necrosis factor alpha (TNFα) or chemokine (C-X-C motif) ligand 10 (Cxcl10) indicated that 48 h after injection internalized nanocrystals did not provoke pro-inflammatory pathways. In conclusion, internalized nanocrystals at least in mouse liver cells, namely endothelial cells, Kupffer cells and hepatocytes are at least not acutely associated with potential adverse side effects, underlining their potential for biomedical applications.

12.
Nat Commun ; 4: 1528, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23443556

RESUMO

Clinical interest in de novo lipogenesis has been sparked by recent studies in rodents demonstrating that de novo lipogenesis specifically in white adipose tissue produces the insulin-sensitizing fatty acid palmitoleate. By contrast, hepatic lipogenesis is thought to contribute to metabolic disease. How de novo lipogenesis in white adipose tissue versus liver is altered in human obesity and insulin resistance is poorly understood. Here we show that lipogenic enzymes and the glucose transporter-4 are markedly decreased in white adipose tissue of insulin-resistant obese individuals compared with non-obese controls. By contrast, lipogenic enzymes are substantially upregulated in the liver of obese subjects. Bariatric weight loss restored de novo lipogenesis and glucose transporter-4 gene expression in white adipose tissue. Notably, lipogenic gene expression in both white adipose tissue and liver was strongly linked to the expression of carbohydrate-responsive element-binding protein-ß and to metabolic risk markers. Thus, de novo lipogenesis predicts metabolic health in humans in a tissue-specific manner and is likely regulated by glucose-dependent carbohydrate-responsive element-binding protein activation.


Assuntos
Adiposidade , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Saúde , Lipogênese , Fígado/metabolismo , Adiposidade/genética , Adulto , Cirurgia Bariátrica , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Índice de Massa Corporal , Ácido Graxo Sintases/metabolismo , Ácidos Graxos/metabolismo , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Feminino , Dosagem de Genes/genética , Regulação da Expressão Gênica , Transportador de Glucose Tipo 4/metabolismo , Humanos , Resistência à Insulina , Gordura Intra-Abdominal/metabolismo , Lipogênese/genética , Masculino , Pessoa de Meia-Idade , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Obesidade/cirurgia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Risco , Gordura Subcutânea/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
13.
Exp Cell Res ; 318(18): 2284-96, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22698646

RESUMO

Mesenchymal stromal cells (MSCs) have been shown to display a considerable therapeutic potential in cellular therapies. However, harmful adipogenic maldifferentiation of transplanted MSCs may seriously threaten the success of this therapeutic approach. We have previously demonstrated that using platelet lysate (PL) instead of widely used fetal calf serum (FCS) diminished lipid accumulation in adipogenically stimulated human MSCs and identified, among others, lipocalin-type prostaglandin D2 synthase (L-PGDS) as a gene suppressed in PL-supplemented MSCs. Here, we investigated the role of PL and putatively pro-adipogenic L-PGDS in human MSC adipogenesis. Next to strongly reduced levels of L-PGDS we show that PL-supplemented MSCs display markedly decreased expression of adipogenic master regulators and differentiation markers, both before and after induction of adipocyte differentiation. The low adipogenic differentiation capability of PL-supplemented MSCs could be partially restored by exogenous addition of L-PGDS protein. Conversely, siRNA-mediated downregulation of L-PGDS in FCS-supplemented MSCs profoundly reduced adipocyte differentiation. In contrast, inhibiting endogenous prostaglandin synthesis by aspirin did not reduce differentiation, suggesting that a mechanism such as lipid shuttling but not the prostaglandin D2 synthase activity of L-PGDS is critical for adipogenesis. Our data demonstrate that L-PGDS is a novel pro-adipogenic factor in human MSCs which might be of relevance in adipocyte metabolism and disease. L-PGDS gene expression is a potential quality marker for human MSCs, as it might predict unwanted adipogenic differentiation after MSC transplantation.


Assuntos
Adipócitos/citologia , Plaquetas/metabolismo , Diferenciação Celular , Oxirredutases Intramoleculares/metabolismo , Lipocalinas/metabolismo , Células-Tronco Mesenquimais/citologia , Adipócitos/metabolismo , Adipogenia , Células Cultivadas , Humanos , Oxirredutases Intramoleculares/antagonistas & inibidores , Oxirredutases Intramoleculares/genética , Lipocalinas/antagonistas & inibidores , Lipocalinas/genética , Células-Tronco Mesenquimais/metabolismo , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA