RESUMO
OBJECTIVES: This study examines clustering based on shape radiomic features and tumor volume to identify IDH-wildtype glioma phenotypes and assess their impact on overall survival (OS). MATERIALS AND METHODS: This retrospective study included 436 consecutive patients diagnosed with IDH-wt glioma who underwent preoperative MR imaging. Alongside the total tumor volume, nine distinct shape radiomic features were extracted using the PyRadiomics framework. Different imaging phenotypes were identified using partition around medoids (PAM) clustering on the training dataset (348/436). The prognostic efficacy of these phenotypes in predicting OS was evaluated on the test dataset (88/436). External validation was performed using the public UCSF glioma dataset (n = 397). A decision-tree algorithm was employed to determine the relevance of features associated with cluster affiliation. RESULTS: PAM clustering identified two clusters in the training dataset: Cluster 1 (n = 233) had a higher proportion of patients with higher sphericity and elongation, while Cluster 2 (n = 115) had a higher proportion of patients with higher maximum 3D diameter, surface area, axis lengths, and tumor volume (p < 0.001 for each). OS differed significantly between clusters: Cluster 1 showed a median OS of 23.8 compared to 11.4 months of Cluster 2 in the holdout test dataset (p = 0.002). Multivariate Cox regression showed improved performance with cluster affiliation over clinical data alone (C index 0.67 vs 0.59, p = 0.003). Cluster-based models outperformed the models with tumor volume alone (evidence ratio: 5.16-5.37). CONCLUSION: Data-driven clustering reveals imaging phenotypes, highlighting the improved prognostic power of combining shape-radiomics with tumor volume, thereby outperforming predictions based on tumor volume alone in high-grade glioma survival outcomes. CLINICAL RELEVANCE STATEMENT: Shape-radiomics and volume-based cluster analyses of preoperative MRI scans can reveal imaging phenotypes that improve the prediction of OS in patients with IDH-wild type gliomas, outperforming currently known models based on tumor size alone or clinical parameters. KEY POINTS: Shape radiomics and tumor volume clustering in IDH-wildtype gliomas are investigated for enhanced prognostic accuracy. Two distinct phenotypic clusters were identified with different median OSs. Integrating shape radiomics and volume-based clustering enhances OS prediction in IDH-wildtype glioma patients.
RESUMO
Background: The purpose of this study was to elucidate the relationship between distinct brain regions and molecular subtypes in glioblastoma (GB), focusing on integrating modern statistical tools and molecular profiling to better understand the heterogeneity of Isocitrate Dehydrogenase wild-type (IDH-wt) gliomas. Methods: This retrospective study comprised 441 patients diagnosed with new IDH-wt glioma between 2009 and 2020 at Heidelberg University Hospital. The diagnostic process included preoperative magnetic resonance imaging and molecular characterization, encompassing IDH-status determination and subclassification, through DNA-methylation profiling. To discern and map distinct brain regions associated with specific methylation subtypes, a support-vector regression-based lesion-symptom mapping (SVR-LSM) was employed. Lesion maps were adjusted to 2 mm³ resolution. Significance was assessed with beta maps, using a threshold of Pâ <â .005, with 10 000 permutations and a cluster size minimum of 100 voxels. Results: Of 441 initially screened glioma patients, 423 (95.9%) met the inclusion criteria. Following DNA-methylation profiling, patients were classified into RTK II (40.7%), MES (33.8%), RTK I (18%), and other methylation subclasses (7.6%). Between molecular subtypes, there was no difference in tumor volume. Using SVR-LSM, distinct brain regions correlated with each subclass were identified: MES subtypes were associated with left-hemispheric regions involving the superior temporal gyrus and insula cortex, RTK I with right frontal regions, and RTK II with 3 clusters in the left hemisphere. Conclusions: This study linked molecular diversity and spatial features in glioblastomas using SVR-LSM. Future studies should validate these findings in larger, independent cohorts to confirm the observed patterns.
RESUMO
Background: This study investigates the influence of diffusion-weighted Magnetic Resonance Imaging (DWI-MRI) on radiomic-based prediction of glioma types according to molecular status and assesses the impact of DWI intensity normalization on model generalizability. Methods: Radiomic features, compliant with image biomarker standardization initiative standards, were extracted from preoperative MRI of 549 patients with diffuse glioma, known IDH, and 1p19q-status. Anatomical sequences (T1, T1c, T2, FLAIR) underwent N4-Bias Field Correction (N4) and WhiteStripe normalization (N4/WS). Apparent diffusion coefficient (ADC) maps were normalized using N4 or N4/z-score. Nine machine-learning algorithms were trained for multiclass prediction of glioma types (IDH-mutant 1p/19q codeleted, IDH-mutant 1p/19q non-codeleted, IDH-wild type). Four approaches were compared: Anatomical, anatomicalâ +â ADC naive, anatomicalâ +â ADC N4, and anatomicalâ +â ADC N4/z-score. The University of California San Francisco (UCSF)-glioma dataset (nâ =â 409) was used for external validation. Results: Naïve-Bayes algorithms yielded overall the best performance on the internal test set. Adding ADC radiomics significantly improved AUC from 0.79 to 0.86 (Pâ =â .011) for the IDH-wild-type subgroup, but not for the other 2 glioma subgroups (Pâ >â .05). In the external UCSF dataset, the addition of ADC radiomics yielded a significantly higher AUC for the IDH-wild-type subgroup (Pâ ≤â .001): 0.80 (N4/WS anatomical alone), 0.81 (anatomicalâ +â ADC naive), 0.81 (anatomicalâ +â ADC N4), and 0.88 (anatomicalâ +â ADC N4/z-score) as well as for the IDH-mutant 1p/19q non-codeleted subgroup (Pâ <â .012 each). Conclusions: ADC radiomics can enhance the performance of conventional MRI-based radiomic models, particularly for IDH-wild-type glioma. The benefit of intensity normalization of ADC maps depends on the type and context of the used data.
RESUMO
BACKGROUND: The extended acquisition times required for MRI limit its availability in resource-constrained settings. Consequently, accelerating MRI by undersampling k-space data, which is necessary to reconstruct an image, has been a long-standing but important challenge. We aimed to develop a deep convolutional neural network (dCNN) optimisation method for MRI reconstruction and to reduce scan times and evaluate its effect on image quality and accuracy of oncological imaging biomarkers. METHODS: In this multicentre, retrospective, cohort study, MRI data from patients with glioblastoma treated at Heidelberg University Hospital (775 patients and 775 examinations) and from the phase 2 CORE trial (260 patients, 1083 examinations, and 58 institutions) and the phase 3 CENTRIC trial (505 patients, 3147 examinations, and 139 institutions) were used to develop, train, and test dCNN for reconstructing MRI from highly undersampled single-coil k-space data with various acceleration rates (R=2, 4, 6, 8, 10, and 15). Independent testing was performed with MRIs from the phase 2/3 EORTC-26101 trial (528 patients with glioblastoma, 1974 examinations, and 32 institutions). The similarity between undersampled dCNN-reconstructed and original MRIs was quantified with various image quality metrics, including structural similarity index measure (SSIM) and the accuracy of undersampled dCNN-reconstructed MRI on downstream radiological assessment of imaging biomarkers in oncology (automated artificial intelligence-based quantification of tumour burden and treatment response) was performed in the EORTC-26101 test dataset. The public NYU Langone Health fastMRI brain test dataset (558 patients and 558 examinations) was used to validate the generalisability and robustness of the dCNN for reconstructing MRIs from available multi-coil (parallel imaging) k-space data. FINDINGS: In the EORTC-26101 test dataset, the median SSIM of undersampled dCNN-reconstructed MRI ranged from 0·88 to 0·99 across different acceleration rates, with 0·92 (95% CI 0·92-0·93) for 10-times acceleration (R=10). The 10-times undersampled dCNN-reconstructed MRI yielded excellent agreement with original MRI when assessing volumes of contrast-enhancing tumour (median DICE for spatial agreement of 0·89 [95% CI 0·88 to 0·89]; median volume difference of 0·01 cm3 [95% CI 0·00 to 0·03] equalling 0·21%; p=0·0036 for equivalence) or non-enhancing tumour or oedema (median DICE of 0·94 [95% CI 0·94 to 0·95]; median volume difference of -0·79 cm3 [95% CI -0·87 to -0·72] equalling -1·77%; p=0·023 for equivalence) in the EORTC-26101 test dataset. Automated volumetric tumour response assessment in the EORTC-26101 test dataset yielded an identical median time to progression of 4·27 months (95% CI 4·14 to 4·57) when using 10-times-undersampled dCNN-reconstructed or original MRI (log-rank p=0·80) and agreement in the time to progression in 374 (95·2%) of 393 patients with data. The dCNN generalised well to the fastMRI brain dataset, with significant improvements in the median SSIM when using multi-coil compared with single-coil k-space data (p<0·0001). INTERPRETATION: Deep-learning-based reconstruction of undersampled MRI allows for a substantial reduction of scan times, with a 10-times acceleration demonstrating excellent image quality while preserving the accuracy of derived imaging biomarkers for the assessment of oncological treatment response. Our developments are available as open source software and hold considerable promise for increasing the accessibility to MRI, pending further prospective validation. FUNDING: Deutsche Forschungsgemeinschaft (German Research Foundation) and an Else Kröner Clinician Scientist Endowed Professorship by the Else Kröner Fresenius Foundation.
Assuntos
Aprendizado Profundo , Glioblastoma , Humanos , Inteligência Artificial , Biomarcadores , Estudos de Coortes , Glioblastoma/diagnóstico por imagem , Imageamento por Ressonância Magnética , Estudos RetrospectivosRESUMO
OBJECTIVES: Radiomic features have demonstrated encouraging results for non-invasive detection of molecular biomarkers, but the lack of guidelines for pre-processing MRI-data has led to poor generalizability. Here, we assessed the influence of different MRI-intensity normalization techniques on the performance of radiomics-based models for predicting molecular glioma subtypes. METHODS: Preoperative MRI-data from n = 615 patients with newly diagnosed glioma and known isocitrate dehydrogenase (IDH) and 1p/19q status were pre-processed using four different methods: no normalization (naive), N4 bias field correction (N4), N4 followed by either WhiteStripe (N4/WS), or z-score normalization (N4/z-score). A total of 377 Image-Biomarker-Standardisation-Initiative-compliant radiomic features were extracted from each normalized data, and 9 different machine-learning algorithms were trained for multiclass prediction of molecular glioma subtypes (IDH-mutant 1p/19q codeleted vs. IDH-mutant 1p/19q non-codeleted vs. IDH wild type). External testing was performed in public glioma datasets from UCSF (n = 410) and TCGA (n = 160). RESULTS: Support vector machine yielded the best performance with macro-average AUCs of 0.84 (naive), 0.84 (N4), 0.87 (N4/WS), and 0.87 (N4/z-score) in the internal test set. Both N4/WS and z-score outperformed the other approaches in the external UCSF and TCGA test sets with macro-average AUCs ranging from 0.85 to 0.87, replicating the performance of the internal test set, in contrast to macro-average AUCs ranging from 0.19 to 0.45 for naive and 0.26 to 0.52 for N4 alone. CONCLUSION: Intensity normalization of MRI data is essential for the generalizability of radiomic-based machine-learning models. Specifically, both N4/WS and N4/z-score approaches allow to preserve the high model performance, yielding generalizable performance when applying the developed radiomic-based machine-learning model in an external heterogeneous, multi-institutional setting. CLINICAL RELEVANCE STATEMENT: Intensity normalization such as N4/WS or N4/z-score can be used to develop reliable radiomics-based machine learning models from heterogeneous multicentre MRI datasets and provide non-invasive prediction of glioma subtypes. KEY POINTS: ⢠MRI-intensity normalization increases the stability of radiomics-based models and leads to better generalizability. ⢠Intensity normalization did not appear relevant when the developed model was applied to homogeneous data from the same institution. ⢠Radiomic-based machine learning algorithms are a promising approach for simultaneous classification of IDH and 1p/19q status of glioma.
Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Radiômica , Glioma/diagnóstico por imagem , Glioma/genética , Imageamento por Ressonância Magnética/métodos , Biomarcadores , Isocitrato Desidrogenase/genética , Mutação , Estudos RetrospectivosRESUMO
BACKGROUND: While the association between diffusion and perfusion magnetic resonance imaging (MRI) and survival in glioblastoma is established, prognostic models for patients are lacking. This study employed clustering of functional imaging to identify distinct functional phenotypes in untreated glioblastomas, assessing their prognostic significance for overall survival. METHODS: A total of 289 patients with glioblastoma who underwent preoperative multimodal MR imaging were included. Mean values of apparent diffusion coefficient normalized relative cerebral blood volume and relative cerebral blood flow were calculated for different tumor compartments and the entire tumor. Distinct imaging patterns were identified using partition around medoids (PAM) clustering on the training dataset, and their ability to predict overall survival was assessed. Additionally, tree-based machine-learning models were trained to ascertain the significance of features pertaining to cluster membership. RESULTS: Using the training dataset (231/289) we identified 2 stable imaging phenotypes through PAM clustering with significantly different overall survival (OS). Validation in an independent test set revealed a high-risk group with a median OS of 10.2 months and a low-risk group with a median OS of 26.6 months (Pâ =â 0.012). Patients in the low-risk cluster had high diffusion and low perfusion values throughout, while the high-risk cluster displayed the reverse pattern. Including cluster membership in all multivariate Cox regression analyses improved performance (Pâ ≤â 0.004 each). CONCLUSIONS: Our research demonstrates that data-driven clustering can identify clinically relevant, distinct imaging phenotypes, highlighting the potential role of diffusion, and perfusion MRI in predicting survival rates of glioblastoma patients.
Assuntos
Neoplasias Encefálicas , Imagem de Difusão por Ressonância Magnética , Glioblastoma , Humanos , Glioblastoma/patologia , Glioblastoma/diagnóstico por imagem , Glioblastoma/mortalidade , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Prognóstico , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Imagem de Difusão por Ressonância Magnética/métodos , Análise por Conglomerados , Adulto , Taxa de Sobrevida , Circulação Cerebrovascular , Aprendizado de Máquina , Adulto Jovem , SeguimentosRESUMO
Background: Reliable detection and precise volumetric quantification of brain metastases (BM) on MRI are essential for guiding treatment decisions. Here we evaluate the potential of artificial neural networks (ANN) for automated detection and quantification of BM. Methods: A consecutive series of 308 patients with BM was used for developing an ANN (with a 4:1 split for training/testing) for automated volumetric assessment of contrast-enhancing tumors (CE) and non-enhancing FLAIR signal abnormality including edema (NEE). An independent consecutive series of 30 patients was used for external testing. Performance was assessed case-wise for CE and NEE and lesion-wise for CE using the case-wise/lesion-wise DICE-coefficient (C/L-DICE), positive predictive value (L-PPV) and sensitivity (C/L-Sensitivity). Results: The performance of detecting CE lesions on the validation dataset was not significantly affected when evaluating different volumetric thresholds (0.001-0.2 cm3; P = .2028). The median L-DICE and median C-DICE for CE lesions were 0.78 (IQR = 0.6-0.91) and 0.90 (IQR = 0.85-0.94) in the institutional as well as 0.79 (IQR = 0.67-0.82) and 0.84 (IQR = 0.76-0.89) in the external test dataset. The corresponding median L-Sensitivity and median L-PPV were 0.81 (IQR = 0.63-0.92) and 0.79 (IQR = 0.63-0.93) in the institutional test dataset, as compared to 0.85 (IQR = 0.76-0.94) and 0.76 (IQR = 0.68-0.88) in the external test dataset. The median C-DICE for NEE was 0.96 (IQR = 0.92-0.97) in the institutional test dataset as compared to 0.85 (IQR = 0.72-0.91) in the external test dataset. Conclusion: The developed ANN-based algorithm (publicly available at www.github.com/NeuroAI-HD/HD-BM) allows reliable detection and precise volumetric quantification of CE and NEE compartments in patients with BM.
RESUMO
BACKGROUND: Gadolinium-based contrast agents (GBCAs) are widely used to enhance tissue contrast during MRI scans and play a crucial role in the management of patients with cancer. However, studies have shown gadolinium deposition in the brain after repeated GBCA administration with yet unknown clinical significance. We aimed to assess the feasibility and diagnostic value of synthetic post-contrast T1-weighted MRI generated from pre-contrast MRI sequences through deep convolutional neural networks (dCNN) for tumour response assessment in neuro-oncology. METHODS: In this multicentre, retrospective cohort study, we used MRI examinations to train and validate a dCNN for synthesising post-contrast T1-weighted sequences from pre-contrast T1-weighted, T2-weighted, and fluid-attenuated inversion recovery sequences. We used MRI scans with availability of these sequences from 775 patients with glioblastoma treated at Heidelberg University Hospital, Heidelberg, Germany (775 MRI examinations); 260 patients who participated in the phase 2 CORE trial (1083 MRI examinations, 59 institutions); and 505 patients who participated in the phase 3 CENTRIC trial (3147 MRI examinations, 149 institutions). Separate training runs to rank the importance of individual sequences and (for a subset) diffusion-weighted imaging were conducted. Independent testing was performed on MRI data from the phase 2 and phase 3 EORTC-26101 trial (521 patients, 1924 MRI examinations, 32 institutions). The similarity between synthetic and true contrast enhancement on post-contrast T1-weighted MRI was quantified using the structural similarity index measure (SSIM). Automated tumour segmentation and volumetric tumour response assessment based on synthetic versus true post-contrast T1-weighted sequences was performed in the EORTC-26101 trial and agreement was assessed with Kaplan-Meier plots. FINDINGS: The median SSIM score for predicting contrast enhancement on synthetic post-contrast T1-weighted sequences in the EORTC-26101 test set was 0·818 (95% CI 0·817-0·820). Segmentation of the contrast-enhancing tumour from synthetic post-contrast T1-weighted sequences yielded a median tumour volume of 6·31 cm3 (5·60 to 7·14), thereby underestimating the true tumour volume by a median of -0·48 cm3 (-0·37 to -0·76) with the concordance correlation coefficient suggesting a strong linear association between tumour volumes derived from synthetic versus true post-contrast T1-weighted sequences (0·782, 0·751-0·807, p<0·0001). Volumetric tumour response assessment in the EORTC-26101 trial showed a median time to progression of 4·2 months (95% CI 4·1-5·2) with synthetic post-contrast T1-weighted and 4·3 months (4·1-5·5) with true post-contrast T1-weighted sequences (p=0·33). The strength of the association between the time to progression as a surrogate endpoint for predicting the patients' overall survival in the EORTC-26101 cohort was similar when derived from synthetic post-contrast T1-weighted sequences (hazard ratio of 1·749, 95% CI 1·282-2·387, p=0·0004) and model C-index (0·667, 0·622-0·708) versus true post-contrast T1-weighted MRI (1·799, 95% CI 1·314-2·464, p=0·0003) and model C-index (0·673, 95% CI 0·626-0·711). INTERPRETATION: Generating synthetic post-contrast T1-weighted MRI from pre-contrast MRI using dCNN is feasible and quantification of the contrast-enhancing tumour burden from synthetic post-contrast T1-weighted MRI allows assessment of the patient's response to treatment with no significant difference by comparison with true post-contrast T1-weighted sequences with administration of GBCAs. This finding could guide the application of dCNN in radiology to potentially reduce the necessity of GBCA administration. FUNDING: Deutsche Forschungsgemeinschaft.
Assuntos
Neoplasias Encefálicas/diagnóstico , Encéfalo/patologia , Meios de Contraste/administração & dosagem , Aprendizado Profundo , Gadolínio/administração & dosagem , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Algoritmos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Imagem de Difusão por Ressonância Magnética , Progressão da Doença , Estudos de Viabilidade , Alemanha , Glioblastoma/diagnóstico , Glioblastoma/diagnóstico por imagem , Humanos , Pessoa de Meia-Idade , Neoplasias , Prognóstico , Radiologia/métodos , Estudos Retrospectivos , Carga TumoralRESUMO
Background Relevance of antiangiogenic treatment with bevacizumab in patients with glioblastoma is controversial because progression-free survival benefit did not translate into an overall survival (OS) benefit in randomized phase III trials. Purpose To perform longitudinal characterization of intratumoral angiogenesis and oxygenation by using dynamic susceptibility contrast agent-enhanced (DSC) MRI and evaluate its potential for predicting outcome from administration of bevacizumab. Materials and Methods In this secondary analysis of the prospective randomized phase II/III European Organization for Research and Treatment of Cancer 26101 trial conducted between October 2011 and December 2015 in 596 patients with first recurrence of glioblastoma, the subset of patients with availability of anatomic MRI and DSC MRI at baseline and first follow-up was analyzed. Patients were allocated into those administered bevacizumab (hereafter, the BEV group; either bevacizumab monotherapy or bevacizumab with lomustine) and those not administered bevacizumab (hereafter, the non-BEV group with lomustine monotherapy). Contrast-enhanced tumor volume, noncontrast-enhanced T2 fluid-attenuated inversion recovery (FLAIR) signal abnormality volume, Gaussian-normalized relative cerebral blood volume (nrCBV), Gaussian-normalized relative blood flow (nrCBF), and tumor metabolic rate of oxygen (nTMRO2) was quantified. The predictive ability of these imaging parameters was assessed with multivariable Cox regression and formal interaction testing. Results A total of 254 of 596 patients were evaluated (mean age, 57 years ± 11; 155 men; 161 in the BEV group and 93 in non-BEV group). Progression-free survival was longer in the BEV group (3.7 months; 95% confidence interval [CI]: 3.0, 4.2) compared with the non-BEV group (2.5 months; 95% CI: 1.5, 2.9; P = .01), whereas OS was not different (P = .15). The nrCBV decreased for the BEV group (-16.3%; interquartile range [IQR], -39.5% to 12.0%; P = .01), but not for the non-BEV group (1.2%; IQR, -17.9% to 23.3%; P = .19) between baseline and first follow-up. An identical pattern was observed for both nrCBF and nTMRO2 values. Contrast-enhanced tumor and noncontrast-enhanced T2 FLAIR signal abnormality volumes decreased for the BEV group (-66% [IQR, -83% to -35%] and -33% [IQR, -71% to -5%], respectively; P < .001 for both), whereas they increased for the non-BEV group (30% [IQR, -17% to 98%], P = .001; and 10% [IQR, -13% to 82%], P = .02, respectively) between baseline and first follow-up. None of the assessed MRI parameters were predictive for OS in the BEV group. Conclusion Bevacizumab treatment decreased tumor volumes, angiogenesis, and oxygenation, thereby reflecting its effectiveness for extending progression-free survival; however, these parameters were not predictive of overall survival (OS), which highlighted the challenges of identifying patients that derive an OS benefit from bevacizumab. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Dillon in this issue.
Assuntos
Inibidores da Angiogênese/uso terapêutico , Bevacizumab/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Imageamento por Ressonância Magnética/métodos , Neovascularização Patológica/tratamento farmacológico , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/patologia , Meios de Contraste , Europa (Continente) , Feminino , Glioblastoma/patologia , Humanos , Lomustina/uso terapêutico , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Estudos Prospectivos , Análise de SobrevidaRESUMO
BACKGROUND: This study validated a previously described diffusion MRI phenotype as a potential predictive imaging biomarker in patients with recurrent glioblastoma receiving bevacizumab (BEV). METHODS: A total of 396/596 patients (66%) from the prospective randomized phase II/III EORTC-26101 trial (with n =â 242 in the BEV and n =â 154 in the non-BEV arm) met the inclusion criteria with availability of anatomical and diffusion MRI sequences at baseline prior treatment. Apparent diffusion coefficient (ADC) histograms from the contrast-enhancing tumor volume were fitted to a double Gaussian distribution and the mean of the lower curve (ADClow) was used for further analysis. The predictive ability of ADClow was assessed with biomarker threshold models and multivariable Cox regression for overall survival (OS) and progression-free survival (PFS). RESULTS: ADClow was associated with PFS (hazard ratio [HR]â =â 0.625, Pâ =â 0.007) and OS (HRâ =â 0.656, Pâ =â 0.031). However, no (predictive) interaction between ADClow and the treatment arm was present (Pâ =â 0.865 for PFS, Pâ =â 0.722 for OS). Independent (prognostic) significance of ADClow was retained after adjusting for epidemiological, clinical, and molecular characteristics (Pâ ≤â 0.02 for OS, Pâ ≤â 0.01 PFS). The biomarker threshold model revealed an optimal ADClow cutoff of 1241*10-6 mm2/s for OS. Thereby, median OS for BEV-patients with ADClow ≥ 1241 was 10.39 months versus 8.09 months for those with ADClow < 1241 (Pâ =â 0.004). Similarly, median OS for non-BEV patients with ADClow ≥ 1241 was 9.80 months versus 7.79 months for those with ADClow < 1241 (Pâ =â 0.054). CONCLUSIONS: ADClow is an independent prognostic parameter for stratifying OS and PFS in patients with recurrent glioblastoma. Consequently, the previously suggested role of ADClow as predictive imaging biomarker could not be confirmed within this phase II/III trial.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Inibidores da Angiogênese/uso terapêutico , Bevacizumab/uso terapêutico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Imagem de Difusão por Ressonância Magnética , Feminino , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/tratamento farmacológico , Fenótipo , Estudos ProspectivosRESUMO
Brain extraction is a critical preprocessing step in the analysis of neuroimaging studies conducted with magnetic resonance imaging (MRI) and influences the accuracy of downstream analyses. The majority of brain extraction algorithms are, however, optimized for processing healthy brains and thus frequently fail in the presence of pathologically altered brain or when applied to heterogeneous MRI datasets. Here we introduce a new, rigorously validated algorithm (termed HD-BET) relying on artificial neural networks that aim to overcome these limitations. We demonstrate that HD-BET outperforms six popular, publicly available brain extraction algorithms in several large-scale neuroimaging datasets, including one from a prospective multicentric trial in neuro-oncology, yielding state-of-the-art performance with median improvements of +1.16 to +2.50 points for the Dice coefficient and -0.66 to -2.51 mm for the Hausdorff distance. Importantly, the HD-BET algorithm, which shows robust performance in the presence of pathology or treatment-induced tissue alterations, is applicable to a broad range of MRI sequence types and is not influenced by variations in MRI hardware and acquisition parameters encountered in both research and clinical practice. For broader accessibility, the HD-BET prediction algorithm is made freely available (www.neuroAI-HD.org) and may become an essential component for robust, automated, high-throughput processing of MRI neuroimaging data.
Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Algoritmos , Humanos , Neuroimagem/métodosRESUMO
BACKGROUND: The Response Assessment in Neuro-Oncology (RANO) criteria and requirements for a uniform protocol have been introduced to standardise assessment of MRI scans in both clinical trials and clinical practice. However, these criteria mainly rely on manual two-dimensional measurements of contrast-enhancing (CE) target lesions and thus restrict both reliability and accurate assessment of tumour burden and treatment response. We aimed to develop a framework relying on artificial neural networks (ANNs) for fully automated quantitative analysis of MRI in neuro-oncology to overcome the inherent limitations of manual assessment of tumour burden. METHODS: In this retrospective study, we compiled a single-institution dataset of MRI data from patients with brain tumours being treated at Heidelberg University Hospital (Heidelberg, Germany; Heidelberg training dataset) to develop and train an ANN for automated identification and volumetric segmentation of CE tumours and non-enhancing T2-signal abnormalities (NEs) on MRI. Independent testing and large-scale application of the ANN for tumour segmentation was done in a single-institution longitudinal testing dataset from the Heidelberg University Hospital and in a multi-institutional longitudinal testing dataset from the prospective randomised phase 2 and 3 European Organisation for Research and Treatment of Cancer (EORTC)-26101 trial (NCT01290939), acquired at 38 institutions across Europe. In both longitudinal datasets, spatial and temporal tumour volume dynamics were automatically quantified to calculate time to progression, which was compared with time to progression determined by RANO, both in terms of reliability and as a surrogate endpoint for predicting overall survival. We integrated this approach for fully automated quantitative analysis of MRI in neuro-oncology within an application-ready software infrastructure and applied it in a simulated clinical environment of patients with brain tumours from the Heidelberg University Hospital (Heidelberg simulation dataset). FINDINGS: For training of the ANN, MRI data were collected from 455 patients with brain tumours (one MRI per patient) being treated at Heidelberg hospital between July 29, 2009, and March 17, 2017 (Heidelberg training dataset). For independent testing of the ANN, an independent longitudinal dataset of 40 patients, with data from 239 MRI scans, was collected at Heidelberg University Hospital in parallel with the training dataset (Heidelberg test dataset), and 2034 MRI scans from 532 patients at 34 institutions collected between Oct 26, 2011, and Dec 3, 2015, in the EORTC-26101 study were of sufficient quality to be included in the EORTC-26101 test dataset. The ANN yielded excellent performance for accurate detection and segmentation of CE tumours and NE volumes in both longitudinal test datasets (median DICE coefficient for CE tumours 0·89 [95% CI 0·86-0·90], and for NEs 0·93 [0·92-0·94] in the Heidelberg test dataset; CE tumours 0·91 [0·90-0·92], NEs 0·93 [0·93-0·94] in the EORTC-26101 test dataset). Time to progression from quantitative ANN-based assessment of tumour response was a significantly better surrogate endpoint than central RANO assessment for predicting overall survival in the EORTC-26101 test dataset (hazard ratios ANN 2·59 [95% CI 1·86-3·60] vs central RANO 2·07 [1·46-2·92]; p<0·0001) and also yielded a 36% margin over RANO (p<0·0001) when comparing reliability values (ie, agreement in the quantitative volumetrically defined time to progression [based on radiologist ground truth vs automated assessment with ANN] of 87% [266 of 306 with sufficient data] compared with 51% [155 of 306] with local vs independent central RANO assessment). In the Heidelberg simulation dataset, which comprised 466 patients with brain tumours, with 595 MRI scans obtained between April 27, and Sept 17, 2018, automated on-demand processing of MRI scans and quantitative tumour response assessment within the simulated clinical environment required 10 min of computation time (average per scan). INTERPRETATION: Overall, we found that ANN enabled objective and automated assessment of tumour response in neuro-oncology at high throughput and could ultimately serve as a blueprint for the application of ANN in radiology to improve clinical decision making. Future research should focus on prospective validation within clinical trials and application for automated high-throughput imaging biomarker discovery and extension to other diseases. FUNDING: Medical Faculty Heidelberg Postdoc-Program, Else Kröner-Fresenius Foundation.