Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Haematologica ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38654668

RESUMO

The open reading frame 8 (ORF8) protein, encoded by the SARS-CoV-2 virus after infection, stimulates monocytes/macrophages to produce pro-inflammatory cytokines. We hypothesized that a positive ex vivo monocyte response to ORF8 protein pre-COVID-19 would be associated with subsequent severe COVID-19. We tested ORF8 ex vivo on peripheral blood mononuclear cells (PBMCs) from 26 anonymous healthy blood donors and measured intracellular cytokine/chemokine levels in monocytes by flow cytometry. The % monocytes staining positive in the sample and change in mean fluorescence intensity (ΔMFI) after ORF8 were used to calculate the adjusted MFI for each cytokine. We then tested pre-COVID-19 PBMC samples from 60 CLL patients who subsequently developed COVID-19 infection. Severe COVID-19 was defined as hospitalization due to COVID-19. In the 26 normal donor samples, the adjusted MFI for interleukin (IL)-1ß, IL-6, IL-8, and CCL-2 were significantly different with ORF8 stimulation vs controls. We next analyzed monocytes from pre-COVID-19 PBMC samples from 60 CLL patients. The adjusted MFI to ORF8 stimulation of monocyte intracellular IL-1ß was associated with severe COVID-19 and a reactive ORF8 monocyte response was defined as an IL- 1ß adjusted MFI ≥ 0.18 (sensitivity 67%, specificity 75%). The median time to hospitalization after infection in CLL patients with a reactive ORF8 response was 12 days versus not reached for patients with a non-reactive ORF8 response with a hazard ratio of 7.7 (95% CI: 2.4-132, p=0.005). These results provide new insight on the monocyte inflammatory response to virus with implications in a broad range of disorders involving monocytes.

2.
NPJ Breast Cancer ; 9(1): 101, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114522

RESUMO

Endoxifen, a secondary tamoxifen metabolite, is a potent antiestrogen exhibiting estrogen receptor alpha (ERα) binding at nanomolar concentrations. Phase I/II clinical trials identified clinical activity of Z-endoxifen (ENDX), in endocrine-refractory metastatic breast cancer as well as ERα+ solid tumors, raising the possibility that ENDX may have a second, ERα-independent, mechanism of action. An unbiased mass spectrometry approach revealed that ENDX concentrations achieved clinically with direct ENDX administration (5 µM), but not low concentrations observed during tamoxifen treatment (<0.1 µM), profoundly altered the phosphoproteome of the aromatase expressing MCF7AC1 cells with limited impact on the total proteome. Computational analysis revealed protein kinase C beta (PKCß) and protein kinase B alpha or AKT1 as potential kinases responsible for mediating ENDX effects on protein phosphorylation. ENDX more potently inhibited PKCß1 kinase activity compared to other PKC isoforms, and ENDX binding to PKCß1 was confirmed using Surface Plasma Resonance. Under conditions that activated PKC/AKT signaling, ENDX induced PKCß1 degradation, attenuated PKCß1-activated AKTSer473 phosphorylation, diminished AKT substrate phosphorylation, and induced apoptosis. ENDX's effects on AKT were phenocopied by siRNA-mediated PKCß1 knockdown or treatment with the pan-AKT inhibitor, MK-2206, while overexpression of constitutively active AKT diminished ENDX-induced apoptosis. These findings, which identify PKCß1 as an ENDX target, indicate that PKCß1/ENDX interactions suppress AKT signaling and induce apoptosis in breast cancer.

3.
Open Biol ; 11(10): 210221, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34610268

RESUMO

RNA polymerase II (Pol II)-dependent transcription in stimulus-inducible genes requires topoisomerase IIß (TOP2B)-mediated DNA strand break and the activation of DNA damage response signalling in humans. Here, we report a novel function of the breast cancer 1 (BRCA1)-BRCA1-associated ring domain 1 (BARD1) complex in this process. We found that BRCA1 is phosphorylated at S1524 by the kinases ataxia-telangiectasia mutated and ATR during gene activation, and that this event is important for productive transcription. Our biochemical and genomic analyses showed that the BRCA1-BARD1 complex interacts with TOP2B in the EGR1 transcription start site and in a large number of protein-coding genes. Intriguingly, the BRCA1-BARD1 complex ubiquitinates TOP2B, which stabilizes TOP2B binding to DNA while BRCA1 phosphorylation at S1524 controls the TOP2B ubiquitination by the complex. Together, these findings suggest the novel function of the BRCA1-BARD1 complex in the regulation of TOP2B and Pol II-mediated gene expression.


Assuntos
Proteína BRCA1/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Proteínas Imediatamente Precoces/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína BRCA1/química , Proteína 1 de Resposta de Crescimento Precoce/genética , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Mutação , Fosforilação , Sítio de Iniciação de Transcrição , Transcrição Gênica , Ubiquitinação
4.
Cell ; 182(2): 481-496.e21, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32649862

RESUMO

The response to DNA damage is critical for cellular homeostasis, tumor suppression, immunity, and gametogenesis. In order to provide an unbiased and global view of the DNA damage response in human cells, we undertook 31 CRISPR-Cas9 screens against 27 genotoxic agents in the retinal pigment epithelium-1 (RPE1) cell line. These screens identified 890 genes whose loss causes either sensitivity or resistance to DNA-damaging agents. Mining this dataset, we discovered that ERCC6L2 (which is mutated in a bone-marrow failure syndrome) codes for a canonical non-homologous end-joining pathway factor, that the RNA polymerase II component ELOF1 modulates the response to transcription-blocking agents, and that the cytotoxicity of the G-quadruplex ligand pyridostatin involves trapping topoisomerase II on DNA. This map of the DNA damage response provides a rich resource to study this fundamental cellular system and has implications for the development and use of genotoxic agents in cancer therapy.


Assuntos
Dano ao DNA , Redes Reguladoras de Genes/fisiologia , Aminoquinolinas/farmacologia , Animais , Sistemas CRISPR-Cas/genética , Linhagem Celular , Citocromo-B(5) Redutase/genética , Citocromo-B(5) Redutase/metabolismo , Dano ao DNA/efeitos dos fármacos , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo do DNA , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Humanos , Camundongos , Ácidos Picolínicos/farmacologia , RNA Guia de Cinetoplastídeos/metabolismo , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética
5.
Science ; 357(6358): 1412-1416, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28912134

RESUMO

Topoisomerase 2 (TOP2) DNA transactions proceed via formation of the TOP2 cleavage complex (TOP2cc), a covalent enzyme-DNA reaction intermediate that is vulnerable to trapping by potent anticancer TOP2 drugs. How genotoxic TOP2 DNA-protein cross-links are resolved is unclear. We found that the SUMO (small ubiquitin-related modifier) ligase ZATT (ZNF451) is a multifunctional DNA repair factor that controls cellular responses to TOP2 damage. ZATT binding to TOP2cc facilitates a proteasome-independent tyrosyl-DNA phosphodiesterase 2 (TDP2) hydrolase activity on stalled TOP2cc. The ZATT SUMO ligase activity further promotes TDP2 interactions with SUMOylated TOP2, regulating efficient TDP2 recruitment through a "split-SIM" SUMO2 engagement platform. These findings uncover a ZATT-TDP2-catalyzed and SUMO2-modulated pathway for direct resolution of TOP2cc.


Assuntos
Dano ao DNA , Reparo do DNA , DNA Topoisomerases Tipo II/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Aminoaciltransferases , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Domínio Catalítico , DNA/genética , DNA/metabolismo , DNA Topoisomerases Tipo II/genética , Proteínas de Ligação a DNA , Etoposídeo/farmacologia , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Imunoprecipitação , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Proteínas Nucleares/genética , Diester Fosfórico Hidrolases , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Inibidores da Topoisomerase II/farmacologia , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
6.
Nucleic Acids Res ; 44(8): 3829-44, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-27060144

RESUMO

Mammalian Tyrosyl-DNA phosphodiesterase 2 (Tdp2) reverses Topoisomerase 2 (Top2) DNA-protein crosslinks triggered by Top2 engagement of DNA damage or poisoning by anticancer drugs. Tdp2 deficiencies are linked to neurological disease and cellular sensitivity to Top2 poisons. Herein, we report X-ray crystal structures of ligand-free Tdp2 and Tdp2-DNA complexes with alkylated and abasic DNA that unveil a dynamic Tdp2 active site lid and deep substrate binding trench well-suited for engaging the diverse DNA damage triggers of abortive Top2 reactions. Modeling of a proposed Tdp2 reaction coordinate, combined with mutagenesis and biochemical studies support a single Mg(2+)-ion mechanism assisted by a phosphotyrosyl-arginine cation-π interface. We further identify a Tdp2 active site SNP that ablates Tdp2 Mg(2+) binding and catalytic activity, impairs Tdp2 mediated NHEJ of tyrosine blocked termini, and renders cells sensitive to the anticancer agent etoposide. Collectively, our results provide a structural mechanism for Tdp2 engagement of heterogeneous DNA damage that causes Top2 poisoning, and indicate that evaluation of Tdp2 status may be an important personalized medicine biomarker informing on individual sensitivities to chemotherapeutic Top2 poisons.


Assuntos
Dano ao DNA , DNA Topoisomerases Tipo II/metabolismo , Diester Fosfórico Hidrolases/química , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/química , Animais , Domínio Catalítico , DNA/química , DNA/metabolismo , Adutos de DNA/química , Adutos de DNA/metabolismo , Reparo do DNA por Junção de Extremidades , DNA Topoisomerases Tipo II/química , Proteínas de Ligação a DNA , Humanos , Magnésio/química , Camundongos , Camundongos Knockout , Modelos Moleculares , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Fosfotirosina/metabolismo , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/genética , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/metabolismo
7.
Environ Mol Mutagen ; 56(1): 1-21, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25111769

RESUMO

Exposure to environmental toxicants and stressors, radiation, pharmaceutical drugs, inflammation, cellular respiration, and routine DNA metabolism all lead to the production of cytotoxic DNA strand breaks. Akin to splintered wood, DNA breaks are not "clean." Rather, DNA breaks typically lack DNA 5'-phosphate and 3'-hydroxyl moieties required for DNA synthesis and DNA ligation. Failure to resolve damage at DNA ends can lead to abnormal DNA replication and repair, and is associated with genomic instability, mutagenesis, neurological disease, ageing and carcinogenesis. An array of chemically heterogeneous DNA termini arises from spontaneously generated DNA single-strand and double-strand breaks (SSBs and DSBs), and also from normal and/or inappropriate DNA metabolism by DNA polymerases, DNA ligases and topoisomerases. As a front line of defense to these genotoxic insults, eukaryotic cells have accrued an arsenal of enzymatic first responders that bind and protect damaged DNA termini, and enzymatically tailor DNA ends for DNA repair synthesis and ligation. These nucleic acid transactions employ direct damage reversal enzymes including Aprataxin (APTX), Polynucleotide kinase phosphatase (PNK), the tyrosyl DNA phosphodiesterases (TDP1 and TDP2), the Ku70/80 complex and DNA polymerase ß (POLß). Nucleolytic processing enzymes such as the MRE11/RAD50/NBS1/CtIP complex, Flap endonuclease (FEN1) and the apurinic endonucleases (APE1 and APE2) also act in the chemical "cleansing" of DNA breaks to prevent genomic instability and disease, and promote progression of DNA- and RNA-DNA damage response (DDR and RDDR) pathways. Here, we provide an overview of cellular first responders dedicated to the detection and repair of abnormal DNA termini.


Assuntos
Dano ao DNA/genética , Reparo do DNA/genética , DNA/química , DNA/genética , Animais , Progressão da Doença , Instabilidade Genômica , Humanos , Conformação de Ácido Nucleico
8.
J Biol Chem ; 289(26): 17960-9, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24808172

RESUMO

Eukaryotic type II topoisomerases (Top2α and Top2ß) are homodimeric enzymes; they are essential for altering DNA topology by the formation of normally transient double strand DNA cleavage. Anticancer drugs (etoposide, doxorubicin, and mitoxantrone) and also Top2 oxidation and DNA helical alterations cause potentially irreversible Top2·DNA cleavage complexes (Top2cc), leading to Top2-linked DNA breaks. Top2cc are the therapeutic mechanism for killing cancer cells. Yet Top2cc can also generate recombination, translocations, and apoptosis in normal cells. The Top2 protein-DNA covalent complexes are excised (in part) by tyrosyl-DNA-phosphodiesterase 2 (TDP2/TTRAP/EAP2/VPg unlinkase). In this study, we show that irreversible Top2cc induced in suicidal substrates are not processed by TDP2 unless they first undergo proteolytic processing or denaturation. We also demonstrate that TDP2 is most efficient when the DNA attached to the tyrosyl is in a single-stranded configuration and that TDP2 can efficiently remove a tyrosine linked to a single misincorporated ribonucleotide or to polyribonucleotides, which expands the TDP2 catalytic profile with RNA substrates. The 1.6-Å resolution crystal structure of TDP2 bound to a substrate bearing a 5'-ribonucleotide defines a mechanism through which RNA can be accommodated in the TDP2 active site, albeit in a strained conformation.


Assuntos
DNA Topoisomerases Tipo II/metabolismo , DNA/metabolismo , Proteínas Nucleares/metabolismo , RNA/metabolismo , Fatores de Transcrição/metabolismo , Cristalografia por Raios X , DNA/genética , DNA Topoisomerases Tipo II/genética , Proteínas de Ligação a DNA , Humanos , Modelos Moleculares , Proteínas Nucleares/genética , Diester Fosfórico Hidrolases , Ligação Proteica , Proteólise , RNA/genética , Fatores de Transcrição/genética
9.
Nature ; 506(7486): 111-5, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24362567

RESUMO

Faithful maintenance and propagation of eukaryotic genomes is ensured by three-step DNA ligation reactions used by ATP-dependent DNA ligases. Paradoxically, when DNA ligases encounter nicked DNA structures with abnormal DNA termini, DNA ligase catalytic activity can generate and/or exacerbate DNA damage through abortive ligation that produces chemically adducted, toxic 5'-adenylated (5'-AMP) DNA lesions. Aprataxin (APTX) reverses DNA adenylation but the context for deadenylation repair is unclear. Here we examine the importance of APTX to RNase-H2-dependent excision repair (RER) of a lesion that is very frequently introduced into DNA, a ribonucleotide. We show that ligases generate adenylated 5' ends containing a ribose characteristic of RNase H2 incision. APTX efficiently repairs adenylated RNA-DNA, and acting in an RNA-DNA damage response (RDDR), promotes cellular survival and prevents S-phase checkpoint activation in budding yeast undergoing RER. Structure-function studies of human APTX-RNA-DNA-AMP-Zn complexes define a mechanism for detecting and reversing adenylation at RNA-DNA junctions. This involves A-form RNA binding, proper protein folding and conformational changes, all of which are affected by heritable APTX mutations in ataxia with oculomotor apraxia 1. Together, these results indicate that accumulation of adenylated RNA-DNA may contribute to neurological disease.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Genoma Humano/genética , Proteínas Nucleares/metabolismo , RNA/metabolismo , Monofosfato de Adenosina/metabolismo , Apraxias/genética , Ataxia Telangiectasia/genética , Sobrevivência Celular , Ataxia Cerebelar/congênito , DNA/química , Reparo do DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Exodesoxirribonucleases/química , Exodesoxirribonucleases/metabolismo , Humanos , Hipoalbuminemia/genética , Modelos Moleculares , Mutação/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Conformação de Ácido Nucleico , Conformação Proteica , Dobramento de Proteína , RNA/química , Ribonuclease H/metabolismo , Pontos de Checagem da Fase S do Ciclo Celular , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Relação Estrutura-Atividade , Zinco/metabolismo
10.
EMBO J ; 32(9): 1225-37, 2013 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-23481255

RESUMO

Adenosine diphosphate (ADP)-ribosylation is a post-translational protein modification implicated in the regulation of a range of cellular processes. A family of proteins that catalyse ADP-ribosylation reactions are the poly(ADP-ribose) (PAR) polymerases (PARPs). PARPs covalently attach an ADP-ribose nucleotide to target proteins and some PARP family members can subsequently add additional ADP-ribose units to generate a PAR chain. The hydrolysis of PAR chains is catalysed by PAR glycohydrolase (PARG). PARG is unable to cleave the mono(ADP-ribose) unit directly linked to the protein and although the enzymatic activity that catalyses this reaction has been detected in mammalian cell extracts, the protein(s) responsible remain unknown. Here, we report the homozygous mutation of the c6orf130 gene in patients with severe neurodegeneration, and identify C6orf130 as a PARP-interacting protein that removes mono(ADP-ribosyl)ation on glutamate amino acid residues in PARP-modified proteins. X-ray structures and biochemical analysis of C6orf130 suggest a mechanism of catalytic reversal involving a transient C6orf130 lysyl-(ADP-ribose) intermediate. Furthermore, depletion of C6orf130 protein in cells leads to proliferation and DNA repair defects. Collectively, our data suggest that C6orf130 enzymatic activity has a role in the turnover and recycling of protein ADP-ribosylation, and we have implicated the importance of this protein in supporting normal cellular function in humans.


Assuntos
Glicosídeo Hidrolases/fisiologia , Doenças Neurodegenerativas/enzimologia , Poli Adenosina Difosfato Ribose/fisiologia , Tioléster Hidrolases/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Células Cultivadas , Criança , Pré-Escolar , Família , Feminino , Glicosídeo Hidrolases/genética , Células HEK293 , Células HeLa , Humanos , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Doenças Neurodegenerativas/genética , Linhagem , Poli Adenosina Difosfato Ribose/genética , Processamento de Proteína Pós-Traducional/genética , Homologia de Sequência de Aminoácidos , Tioléster Hidrolases/genética
11.
Nat Struct Mol Biol ; 19(12): 1363-71, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23104055

RESUMO

The topoisomerase II (topo II) DNA incision-and-ligation cycle can be poisoned (for example following treatment with cancer chemotherapeutics) to generate cytotoxic DNA double-strand breaks (DSBs) with topo II covalently conjugated to DNA. Tyrosyl-DNA phosphodiesterase 2 (Tdp2) protects genomic integrity by reversing 5'-phosphotyrosyl-linked topo II-DNA adducts. Here, X-ray structures of mouse Tdp2-DNA complexes reveal that Tdp2 ß-2-helix-ß DNA damage-binding 'grasp', helical 'cap' and DNA lesion-binding elements fuse to form an elongated protein-DNA conjugate substrate-interaction groove. The Tdp2 DNA-binding surface is highly tailored for engagement of 5'-adducted single-stranded DNA ends and restricts nonspecific endonucleolytic or exonucleolytic processing. Structural, mutational and functional analyses support a single-metal ion catalytic mechanism for the exonuclease-endonuclease-phosphatase (EEP) nuclease superfamily and establish a molecular framework for targeted small-molecule blockade of Tdp2-mediated resistance to anticancer topoisomerase drugs.


Assuntos
Adutos de DNA , Reparo do DNA , DNA Topoisomerases Tipo II/química , Diester Fosfórico Hidrolases/química , Animais , Catálise , Cristalografia por Raios X , Camundongos , Modelos Moleculares
12.
RNA ; 18(11): 2020-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23006625

RESUMO

Small RNAs derived from clustered, regularly interspaced, short palindromic repeat (CRISPR) loci in bacteria and archaea are involved in an adaptable and heritable gene-silencing pathway. Resistance to invasive genetic material is conferred by the incorporation of short DNA sequences derived from this material into the genome as CRISPR spacer elements separated by short repeat sequences. Processing of long primary transcripts (pre-crRNAs) containing these repeats by a CRISPR-associated (Cas) RNA endonuclease generates the mature effector RNAs that target foreign nucleic acid for degradation. Here we describe functional studies of a Cas5d ortholog, and high-resolution structural studies of a second Cas5d family member, demonstrating that Cas5d is a sequence-specific RNA endonuclease that cleaves CRISPR repeats and is thus responsible for processing of pre-crRNA. Analysis of the structural homology of Cas5d with the previously characterized Cse3 protein allows us to model the interaction of Cas5d with its RNA substrate and conclude that it is a member of a larger family of CRISPR RNA endonucleases.


Assuntos
Proteínas de Bactérias/química , Endorribonucleases/química , Mannheimia/enzimologia , Precursores de RNA/química , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Ensaio de Desvio de Mobilidade Eletroforética , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Secundária de Proteína , Clivagem do RNA , Sequências Repetitivas de Ácido Nucleico , Homologia Estrutural de Proteína , Especificidade por Substrato
13.
RNA ; 17(1): 155-65, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21062891

RESUMO

Human p14 (SF3b14), a component of the spliceosomal U2 snRNP, interacts directly with the pre-mRNA branch adenosine within the context of the bulged duplex formed between the pre-mRNA branch region and U2 snRNA. This association occurs early in spliceosome assembly and persists within the fully assembled spliceosome. Analysis of the crystal structure of a complex containing p14 and a peptide derived from p14-associated SF3b155 combined with the results of cross-linking studies has suggested that the branch nucleotide interacts with a pocket on a non-canonical RNA binding surface formed by the complex. Here we report a structural model of the p14 · bulged duplex interaction based on a combination of X-ray crystallography of an adenine p14/SF3b155 peptide complex, biochemical comparison of a panel of disulfide cross-linked protein-RNA complexes, and small-angle X-ray scattering (SAXS). These studies reveal specific recognition of the branch adenosine within the p14 pocket and establish the orientation of the bulged duplex RNA bound on the protein surface. The intimate association of one surface of the bulged duplex with the p14/SF3b155 peptide complex described by this model buries the branch nucleotide at the interface and suggests that p14 · duplex interaction must be disrupted before the first step of splicing.


Assuntos
Adenina/metabolismo , Fragmentos de Peptídeos/metabolismo , Fosfoproteínas/química , RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U2/química , Spliceossomos/fisiologia , Reagentes de Ligações Cruzadas/farmacologia , Cristalografia por Raios X , Dissulfetos/metabolismo , Humanos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Conformação Proteica , RNA/genética , Precursores de RNA/genética , Splicing de RNA , Fatores de Processamento de RNA , Ribonucleoproteína Nuclear Pequena U2/genética , Ribonucleoproteína Nuclear Pequena U2/metabolismo
14.
J Mol Biol ; 402(4): 720-30, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20713060

RESUMO

Protein folding involves the formation of secondary structural elements from the primary sequence and their association with tertiary assemblies. The relation of this primary sequence to a specific folded protein structure remains a central question in structural biology. An increasing body of evidence suggests that variations in homologous sequence ranging from point mutations to substantial insertions or deletions can yield stable proteins with markedly different folds. Here we report the structural characterization of domain IV (D4) and ΔD4 (polypeptides with 222 and 160 amino acids, respectively) that differ by virtue of an N-terminal deletion of 62 amino acids (28% of the overall D4 sequence). The high-resolution crystal structures of the monomeric D4 and the dimeric ΔD4 reveal substantially different folds despite an overall conservation of secondary structure. These structures show that the formation of tertiary structures, even in extended polypeptide sequences, can be highly context dependent, and they serve as a model for structural plasticity in protein isoforms.


Assuntos
Proteínas de Transporte/química , Proteínas Periplásmicas de Ligação/química , Dobramento de Proteína , Proteínas de Transporte/genética , Cristalização , Humanos , Proteínas Ligantes de Maltose , Mutação , Proteínas Periplásmicas de Ligação/genética , Multimerização Proteica , Proteínas de Ligação a RNA , Proteínas Recombinantes de Fusão
15.
Trends Biochem Sci ; 33(6): 243-6, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18472266

RESUMO

Intron excision from pre-mRNAs of higher eukaryotes requires a transition from splice-site recognition across short exons to organization of the spliceosome across long introns. Recently, insight into this transition has been provided and, in addition, it has been shown that an alternative splicing factor, the polypyrimidine-tract-binding protein, can exert its control on splice-site choice by blocking this key step in the assembly of the splicing machinery.


Assuntos
Células Eucarióticas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Precursores de RNA/metabolismo , Sítios de Splice de RNA/fisiologia , Splicing de RNA/fisiologia , Spliceossomos/metabolismo , Animais , Humanos , Íntrons/fisiologia
16.
J Biol Chem ; 281(24): 16530-5, 2006 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-16618704

RESUMO

Members of the ADAR (adenosine deaminase that acts on RNA) enzyme family catalyze the hydrolytic deamination of adenosine to inosine within double-stranded RNAs, a poorly understood process that is critical to mammalian development. We have performed fluorescence resonance energy transfer experiments in mammalian cells transfected with fluorophore-bearing ADAR1 and ADAR2 fusion proteins to investigate the relationship between these proteins. These studies conclusively demonstrate the homodimerization of ADAR1 and ADAR2 and also show that ADAR1 and ADAR2 form heterodimers in human cells. RNase treatment of cells expressing these fusion proteins changes their localization but does not affect dimerization. Taken together these results suggest that homo- and heterodimerization are important for the activity of ADAR family members in vivo and that these associations are RNA independent.


Assuntos
Adenosina Desaminase/química , Transferência Ressonante de Energia de Fluorescência/métodos , Edição de RNA , RNA/química , Dimerização , Células HeLa , Humanos , Microscopia de Fluorescência , Proteínas de Ligação a RNA , Ribonucleases/química , Transfecção
17.
Proc Natl Acad Sci U S A ; 103(5): 1266-71, 2006 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-16432215

RESUMO

The precise excision of introns from precursor mRNAs (pre-mRNAs) in eukaryotes is accomplished by the spliceosome, a complex assembly containing five small nuclear ribonucleoprotein (snRNP) particles. Human p14, a component of the spliceosomal U2 and U11/U12 snRNPs, has been shown to associate directly with the pre-mRNA branch adenosine early in spliceosome assembly and within the fully assembled spliceosome. Here we report the 2.5-A crystal structure of a complex containing p14 and a peptide derived from the p14-associated U2 snRNP component SF3b155. p14 contains an RNA recognition motif (RRM), the surface of which is largely occluded by a C-terminal alpha-helix and a portion of the SF3b155 peptide. An analysis of RNA.protein crosslinking to wild-type and mutant p14 shows that the branch adenosine directly interacts with a conserved aromatic within a pocket on the surface of the complex. This result, combined with a comparison of the structure with known RRMs and pseudoRRMs as well as model-building by using the electron cryomicroscopy structure of a spliceosomal U11/U12 di-snRNP, suggests that p14.SF3b155 presents a noncanonical surface for RNA recognition at the heart of the mammalian spliceosome.


Assuntos
Ribonucleoproteínas Nucleares Pequenas/química , Spliceossomos/química , Adenosina/química , Processamento Alternativo , Sequência de Aminoácidos , Reagentes de Ligações Cruzadas/farmacologia , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Íntrons , Microscopia Eletrônica , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas/química , RNA/química , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Ribonucleoproteína Nuclear Pequena U2/química , Spliceossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA