Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474074

RESUMO

Pulmonary hypertension (PH) associated with left heart disease (PH-LHD) is the most common form of PH. In PH-LHD, changes in the pulmonary vasculature are assumed to be mainly caused by pulmonary venous congestion. However, the underlying mechanisms of this form of PH are poorly understood. We aimed to establish a model of PH associated with pulmonary venous congestion. Wistar-Kyoto rats underwent partial occlusion of the left pulmonary vein to induce pulmonary venous congestion or sham surgery and were assessed at various time points post-surgery (3, 6, 9, 12 weeks). In vivo cardiopulmonary phenotyping was performed by using echocardiography along with heart catheterization. Histomorphometry methods were used to assess pulmonary vascular remodeling (e.g., wall thickness, degree of muscularization). Left pulmonary vein banding (PVB) resulted in mildly elevated right ventricular systolic pressure and moderate right ventricular hypertrophy. In PVB rats, small- and medium-sized pulmonary vessels in the left lung were characterized by increased wall thickness and muscularization. Taken together, our data demonstrate that left PVB-induced pulmonary venous congestion is associated with pulmonary vascular remodeling and mild PH.


Assuntos
Hiperemia , Hipertensão Pulmonar , Veias Pulmonares , Ratos , Animais , Remodelação Vascular , Ratos Endogâmicos WKY
2.
STAR Protoc ; 4(4): 102660, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37883225

RESUMO

Right ventricular failure (RVF) is the leading cause of death in patients with pulmonary hypertension. Here, we present a protocol for pulmonary artery banding in mice to generate a model of pressure-overload-induced RVF. We describe steps for anesthesia of mice, endotracheal intubation, and pulmonary artery banding surgery. We then detail procedures for phenotyping and analysis. Our approach does not involve complete blockage of the pulmonary flow during clip placement and is, therefore, associated with low intraoperative mortality. For complete details on the use and execution of this protocol, please refer to Veith et al. (2020).1.


Assuntos
Insuficiência Cardíaca , Hipertensão Pulmonar , Camundongos , Humanos , Animais , Artéria Pulmonar/cirurgia , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/cirurgia , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/cirurgia
3.
Int J Mol Sci ; 24(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37628831

RESUMO

Pulmonary arterial hypertension (PAH) is a complex disorder characterized by vascular remodeling and a consequent increase in pulmonary vascular resistance. The histologic hallmarks of PAH include plexiform and neointimal lesions of the pulmonary arterioles, which are composed of dysregulated, apoptosis-resistant endothelial cells and myofibroblasts. Platelet-derived growth factor receptors (PDGFR) α and ß, colony stimulating factor 1 receptor (CSF1R), and mast/stem cell growth factor receptor kit (c-KIT) are closely related kinases that have been implicated in PAH progression. In addition, emerging data indicate significant crosstalk between PDGF signaling and the bone morphogenetic protein receptor type 2 (BMPR2)/transforming growth factor ß (TGFß) receptor axis. This review will discuss the importance of the PDGFR-CSF1R-c-KIT signaling network in PAH pathogenesis, present evidence that the inhibition of all three nodes in this kinase network is a potential therapeutic approach for PAH, and highlight the therapeutic potential of seralutinib, currently in development for PAH, which targets these pathways.


Assuntos
Hipertensão Arterial Pulmonar , Humanos , Células Endoteliais , Hipertensão Pulmonar Primária Familiar , Inibidores de Proteínas Quinases , Receptores Proteína Tirosina Quinases , Proteínas Proto-Oncogênicas c-kit
4.
Am J Respir Crit Care Med ; 207(3): 283-299, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36047984

RESUMO

Rationale: Although type II alveolar epithelial cells (AEC2s) are chronically injured in idiopathic pulmonary fibrosis (IPF), they contribute to epithelial regeneration in IPF. Objectives: We hypothesized that Notch signaling may contribute to AEC2 proliferation, dedifferentiation characterized by loss of surfactant processing machinery, and lung fibrosis in IPF. Methods: We applied microarray analysis, kinome profiling, flow cytometry, immunofluorescence analysis, western blotting, quantitative PCR, and proliferation and surface activity analysis to study epithelial differentiation, proliferation, and matrix deposition in vitro (AEC2 lines, primary murine/human AEC2s), ex vivo (human IPF-derived precision-cut lung slices), and in vivo (bleomycin and pepstatin application, Notch1 [Notch receptor 1] intracellular domain overexpression). Measurements and Main Results: We document here extensive SP-B and -C (surfactant protein-B and -C) processing defects in IPF AEC2s, due to loss of Napsin A, resulting in increased intra-alveolar surface tension and alveolar collapse and induction of endoplasmic reticulum stress in AEC2s. In vivo pharmacological inhibition of Napsin A results in the development of AEC2 injury and overt lung fibrosis. We also demonstrate that Notch1 signaling is already activated early in IPF and determines AEC2 fate by inhibiting differentiation (reduced lamellar body compartment, reduced capacity to process hydrophobic SP) and by causing increased epithelial proliferation and development of lung fibrosis, putatively via altered JAK (Janus kinase)/Stat (signal transducer and activator of transcription) signaling in AEC2s. Conversely, inhibition of Notch signaling in IPF-derived precision-cut lung slices improved the surfactant processing capacity of AEC2s and reversed fibrosis. Conclusions: Notch1 is a central regulator of AEC2 fate in IPF. It induces alveolar epithelial proliferation and loss of Napsin A and of surfactant proprotein processing, and it contributes to fibroproliferation.


Assuntos
Fibrose Pulmonar Idiopática , Surfactantes Pulmonares , Humanos , Camundongos , Animais , Tensoativos , Pulmão , Células Epiteliais Alveolares , Bleomicina , Receptor Notch1
5.
Circ Res ; 131(10): 792-806, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36205124

RESUMO

BACKGROUND: In large-scale genomic studies, Sox17, an endothelial-specific transcription factor, has been suggested as a putative causal gene of pulmonary arterial hypertension (PAH); however, its role and molecular mechanisms remain to be elucidated. We investigated the functional impacts and acting mechanisms of impaired Sox17 (SRY-related HMG-box17) pathway in PAH and explored its potential as a therapeutic target. METHODS: In adult mice, Sox17 deletion in pulmonary endothelial cells (ECs) induced PAH under hypoxia with high penetrance and severity, but not under normoxia. RESULTS: Key features of PAH, such as hypermuscularization, EC hyperplasia, and inflammation in lung arterioles, right ventricular hypertrophy, and elevated pulmonary arterial pressure, persisted even after long rest in normoxia. Mechanistically, transcriptomic profiling predicted that the combination of Sox17 deficiency and hypoxia activated c-Met signaling in lung ECs. HGF (hepatocyte grow factor), a ligand of c-Met, was upregulated in Sox17-deficient lung ECs. Pharmacologic inhibition of HGF/c-Met signaling attenuated and reversed the features of PAH in both preventive and therapeutic settings. Similar to findings in animal models, Sox17 levels in lung ECs were repressed in 26.7% of PAH patients (4 of 15), while those were robust in all 14 non-PAH controls. HGF levels in pulmonary arterioles were increased in 86.7% of patients with PAH (13 of 15), but none of the controls showed that pattern. CONCLUSIONS: The downregulation of Sox17 levels in pulmonary arterioles increases the susceptibility to PAH, particularly when exposed to hypoxia. Our findings suggest the reactive upregulation of HGF/c-Met signaling as a novel druggable target for PAH treatment.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Animais , Camundongos , Células Endoteliais/metabolismo , Proteínas HMGB/metabolismo , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipóxia/complicações , Hipóxia/metabolismo , Hipertensão Arterial Pulmonar/genética , Artéria Pulmonar/metabolismo , Transdução de Sinais , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo
6.
Cells ; 11(19)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36230894

RESUMO

The role of microparticles (MPs) and cold in high altitude pulmonary hypertension (HAPH) remains unexplored. We investigated the impact of long-term cold exposure on the pulmonary circulation in lowlanders and high-altitude natives and the role of MPs. Pulmonary hemodynamics were evaluated using Doppler echocardiography at the end of the colder and warmer seasons. We further examined the miRNA content of MPs isolated from the study participants and studied their effects on human pulmonary artery smooth muscle (hPASMCs) and endothelial cells (hPAECs). Long-term exposure to cold environment was associated with an enhanced pulmonary artery pressure in highlanders. Plasma levels of CD62E-positive and CD68-positive MPs increased in response to cold in lowlanders and HAPH highlanders. The miRNA-210 expression contained in MPs differentially changed in response to cold in lowlanders and highlanders. MPs isolated from lowlanders and highlanders increased proliferation and reduced apoptosis of hPASMCs. Further, MPs isolated from warm-exposed HAPH highlanders and cold-exposed highlanders exerted the most pronounced effects on VEGF expression in hPAECs. We demonstrated that prolonged exposure to cold is associated with elevated pulmonary artery pressures, which are most pronounced in high-altitude residents. Further, the numbers of circulating MPs are differentially increased in lowlanders and HAPH highlanders during the colder season.


Assuntos
Hipertensão Pulmonar , MicroRNAs , Altitude , Doença da Altitude , Células Endoteliais , Humanos , Estações do Ano , Fator A de Crescimento do Endotélio Vascular
7.
Cells ; 11(15)2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35954255

RESUMO

HIV and Schistosoma infections have been individually associated with pulmonary vascular disease. Co-infection with these pathogens is very common in tropical areas, with an estimate of six million people co-infected worldwide. However, the effects of HIV and Schistosoma co-exposure on the pulmonary vasculature and its impact on the development of pulmonary vascular disease are largely unknown. Here, we have approached these questions by using a non-infectious animal model based on lung embolization of Schistosoma mansoni eggs in HIV-1 transgenic (HIV) mice. Schistosome-exposed HIV mice but not wild-type (Wt) counterparts showed augmented pulmonary arterial pressure associated with markedly suppressed endothelial-dependent vasodilation, increased endothelial remodeling and vessel obliterations, formation of plexiform-like lesions and a higher degree of perivascular fibrosis. In contrast, medial wall muscularization was similarly increased in both types of mice. Moreover, HIV mice displayed an impaired immune response to parasite eggs in the lung, as suggested by decreased pulmonary leukocyte infiltration, small-sized granulomas, and augmented residual egg burden. Notably, vascular changes in co-exposed mice were associated with increased expression of proinflammatory and profibrotic cytokines, including IFN-γ and IL-17A in CD4+ and γδ T cells and IL-13 in myeloid cells. Collectively, our study shows for the first time that combined pulmonary persistence of HIV proteins and Schistosoma eggs, as it may occur in co-infected people, alters the cytokine landscape and targets the vascular endothelium for aggravated pulmonary vascular pathology. Furthermore, it provides an experimental model for the understanding of pulmonary vascular disease associated with HIV and Schistosoma co-morbidity.


Assuntos
Infecções por HIV , Esquistossomose mansoni , Doenças Vasculares , Animais , Citocinas/metabolismo , Infecções por HIV/complicações , Infecções por HIV/patologia , Humanos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Schistosoma mansoni , Esquistossomose mansoni/complicações , Esquistossomose mansoni/patologia , Doenças Vasculares/patologia
8.
Int J Mol Sci ; 22(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34638712

RESUMO

Increased proliferation of pulmonary arterial smooth muscle cells (PASMCs) in response to chronic hypoxia contributes to pulmonary vascular remodeling in pulmonary hypertension (PH). PH shares numerous similarities with cancer, including a metabolic shift towards glycolysis. In lung cancer, adenylate kinase 4 (AK4) promotes metabolic reprogramming and metastasis. Against this background, we show that AK4 regulates cell proliferation and energy metabolism of primary human PASMCs. We demonstrate that chronic hypoxia upregulates AK4 in PASMCs in a hypoxia-inducible factor-1α (HIF-1α)-dependent manner. RNA interference of AK4 decreases the viability and proliferation of PASMCs under both normoxia and chronic hypoxia. AK4 silencing in PASMCs augments mitochondrial respiration and reduces glycolytic metabolism. The observed effects are associated with reduced levels of phosphorylated protein kinase B (Akt) as well as HIF-1α, indicating the existence of an AK4-HIF-1α feedforward loop in hypoxic PASMCs. Finally, we show that AK4 levels are elevated in pulmonary vessels from patients with idiopathic pulmonary arterial hypertension (IPAH), and AK4 silencing decreases glycolytic metabolism of IPAH-PASMCs. We conclude that AK4 is a new metabolic regulator in PASMCs interacting with HIF-1α and Akt signaling pathways to drive the pro-proliferative and glycolytic phenotype of PH.


Assuntos
Adenilato Quinase/metabolismo , Proliferação de Células , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Artéria Pulmonar/metabolismo , Transdução de Sinais , Hipóxia Celular , Células Cultivadas , Hipertensão Pulmonar Primária Familiar/metabolismo , Hipertensão Pulmonar Primária Familiar/patologia , Glicólise , Humanos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Artéria Pulmonar/patologia
10.
Int J Mol Sci ; 21(23)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33265921

RESUMO

Although the response of the right ventricle (RV) to the increased afterload is an important determinant of the patient outcome, very little is known about the underlying mechanisms. Mast cells have been implicated in the pathogenesis of left ventricular maladaptive remodeling and failure. However, the role of mast cells in RV remodeling remains unexplored. We subjected mast cell-deficient WBB6F1-KitW/W-v (KitW/KitW-v) mice and their mast cell-sufficient littermate controls (MC+/+) to pulmonary artery banding (PAB). PAB led to RV dilatation, extensive myocardial fibrosis, and RV dysfunction in MC+/+ mice. In PAB KitW/KitW-v mice, RV remodeling was characterized by minimal RV chamber dilatation and preserved RV function. We further administered to C57Bl/6J mice either placebo or cromolyn treatment starting from day 1 or 7 days after PAB surgery to test whether mast cells stabilizing drugs can prevent or reverse maladaptive RV remodeling. Both preventive and therapeutic cromolyn applications significantly attenuated RV dilatation and improved RV function. Our study establishes a previously undescribed role of mast cells in pressure overload-induced adverse RV remodeling. Mast cells may thus represent an interesting target for the development of a new therapeutic approach directed specifically at the heart.


Assuntos
Mastócitos/metabolismo , Mastócitos/patologia , Pressão , Remodelação Ventricular/genética , Animais , Biomarcadores/metabolismo , Cromolina Sódica/administração & dosagem , Cromolina Sódica/farmacologia , Fibrose , Regulação da Expressão Gênica/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/patologia , Hipertrofia , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Masculino , Mastócitos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Remodelação Ventricular/efeitos dos fármacos
11.
Am J Physiol Lung Cell Mol Physiol ; 318(4): L831-L843, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32186397

RESUMO

PDGF-A is a key contributor to lung development in mice. Its expression is needed for secondary septation of the alveoli and deletion of the gene leads to abnormally enlarged alveolar air spaces in mice. In humans, the same phenotype is the hallmark of bronchopulmonary dysplasia (BPD), a disease that affects premature babies and may have long lasting consequences in adulthood. So far, the knowledge regarding adult effects of developmental arrest in the lung is limited. This is attributable to few follow-up studies of BPD survivors and lack of good experimental models that could help predict the outcomes of this early age disease for the adult individual. In this study, we used the constitutive lung-specific Pdgfa deletion mouse model to analyze the consequences of developmental lung defects in adult mice. We assessed lung morphology, physiology, cellular content, ECM composition and proteomics data in mature mice, that perinatally exhibited lungs with a BPD-like morphology. Histological and physiological analyses both revealed that enlarged alveolar air spaces remained until adulthood, resulting in higher lung compliance and higher respiratory volume in knockout mice. Still, no or only small differences were seen in cellular, ECM and protein content when comparing knockout and control mice. Taken together, our results indicate that Pdgfa deletion-induced lung developmental arrest has consequences for the adult lung at the morphological and functional level. In addition, these mice can reach adulthood with a BPD-like phenotype, which makes them a robust model to further investigate the pathophysiological progression of the disease and test putative regenerative therapies.


Assuntos
Pulmão/patologia , Fator de Crescimento Derivado de Plaquetas/genética , Animais , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/patologia , Modelos Animais de Doenças , Feminino , Seguimentos , Hiperóxia/genética , Hiperóxia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Alvéolos Pulmonares/patologia
12.
Nat Commun ; 10(1): 2204, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101827

RESUMO

Pulmonary arterial hypertension (PAH) is a devastating disease with poor prognosis and limited therapeutic options. We screened for pathways that may be responsible for the abnormal phenotype of pulmonary arterial smooth muscle cells (PASMCs), a major contributor of PAH pathobiology, and identified cyclin-dependent kinases (CDKs) as overactivated kinases in specimens derived from patients with idiopathic PAH. This increased CDK activity is confirmed at the level of mRNA and protein expression in human and experimental PAH, respectively. Specific CDK inhibition by dinaciclib and palbociclib decreases PASMC proliferation via cell cycle arrest and interference with the downstream CDK-Rb (retinoblastoma protein)-E2F signaling pathway. In two experimental models of PAH (i.e., monocrotaline and Su5416/hypoxia treated rats) palbociclib reverses the elevated right ventricular systolic pressure, reduces right heart hypertrophy, restores the cardiac index, and reduces pulmonary vascular remodeling. These results demonstrate that inhibition of CDKs by palbociclib may be a therapeutic strategy in PAH.


Assuntos
Quinases Ciclina-Dependentes/antagonistas & inibidores , Hipertensão Pulmonar Primária Familiar/tratamento farmacológico , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Animais , Linhagem Celular , Quinases Ciclina-Dependentes/metabolismo , Modelos Animais de Doenças , Hipertensão Pulmonar Primária Familiar/induzido quimicamente , Hipertensão Pulmonar Primária Familiar/patologia , Hipertensão Pulmonar Primária Familiar/cirurgia , Humanos , Indóis/toxicidade , Pulmão/irrigação sanguínea , Pulmão/patologia , Pulmão/cirurgia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monocrotalina/toxicidade , Músculo Liso Vascular/citologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Piperazinas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Artéria Pulmonar/citologia , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , Piridinas/uso terapêutico , Pirróis/toxicidade , Ratos , Ratos Endogâmicos WKY , Ratos Sprague-Dawley , Resultado do Tratamento
13.
Front Physiol ; 10: 54, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30804801

RESUMO

Background: Circulating apoptotic signals (CASs) have been described in the pathologies associated with dysregulated apoptosis, such as cancer, heart diseases, and pulmonary hypertension (PH). However, nothing is known about the expression profiles of these markers in the circulation of humans exposed to acute and chronic effects of high altitude (HA). Methods: Gene expression levels of different apoptotic signals (ASs) were analyzed in human pulmonary artery smooth muscle cells (PASMCs) upon hypoxia incubation. In addition, we measured the plasma values of relevant CAS in Kyrgyz volunteers during acute and chronic exposure to HA. Finally, we analyzed the effects of pro-apoptotic mediator Fas ligand (FasL) on apoptosis and proliferation of human PASMCs. Results: Several cellular AS were increased in PASMCs exposed to hypoxia, in comparison to normoxia condition. Among analyzed CAS, there was a prominent reduction of FasL in lowlanders exposed to HA environment. Furthermore, decreased circulatory levels of FasL were found in highlanders with HA-induced PH (HAPH), as compared to the lowland controls. Furthermore, FasL concentration in plasma negatively correlated with tricuspid regurgitant gradient values. Finally, FasL exerted pro-apoptotic and anti-proliferative effects on PASMCs. Conclusion: Our data demonstrated that circulating levels of FasL are reduced during acute and chronic exposure to HA environment. In addition, dysregulated FasL may play a role in the context of HAPH due to its relevant functions on apoptosis and proliferation of PASMCs.

14.
Exp Physiol ; 103(9): 1185-1191, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29917290

RESUMO

NEW FINDINGS: What is the central question of this study? Hypoxic pulmonary vasoconstriction has never been characterized in isolated mouse pulmonary arteries of different generations in detail. What is the main finding and its importance? We found that only small intrapulmonary arteries (80-200 µm in diameter) exhibit hypoxic pulmonary vasoconstriction. The observed response was sustained, significantly potentiated by depolarization-induced preconstriction and not dependent on the endothelium or TRPC6 channels. ABSTRACT: Hypoxic pulmonary vasoconstriction (HPV) is a physiological response of pulmonary arteries, which adapts lung perfusion to regional ventilation. The properties of HPV vary significantly between animal species. Despite extensive use of mouse models in studies of HPV, this physiological response has never been characterized in isolated mouse pulmonary arteries in detail. Using wire myography, we investigated the effect of 80 min exposure to hypoxia on the tone in mouse pulmonary arteries of different generations in the presence and absence of preconstriction. Hypoxia induced a sustained relaxation in non-preconstricted extrapulmonary arteries (500-700 µm in diameter), but not in the presence of KCl-induced preconstriction. Large intrapulmonary arteries (450-650 µm in diameter) did not exhibit a significant response to the hypoxic challenge. In contrast, in small intrapulmonary arteries (80-200 µm in diameter), hypoxia elicited a slowly developing sustained constriction, which was independent of the endothelium. The response was significantly potentiated in arteries preconstricted with KCl, but not with U46619. Hypoxic pulmonary vasoconstriction was not altered in pulmonary arteries of TRPC6-deficient mice, which suggests that this response corresponds to the sustained phase of biphasic HPV observed earlier in isolated, buffer-perfused and ventilated mouse lungs. In conclusion, we have established a protocol that allows the study of sustained HPV in isolated mouse pulmonary arteries. The data obtained might be useful for future studies of the mechanisms of HPV in mice.


Assuntos
Hipóxia/fisiopatologia , Artéria Pulmonar/fisiopatologia , Circulação Pulmonar , Vasoconstrição , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Animais , Endotélio Vascular/fisiopatologia , Feminino , Técnicas In Vitro , Masculino , Camundongos , Camundongos Knockout , Tono Muscular , Músculo Liso Vascular , Miografia , Cloreto de Potássio/farmacologia , Canais de Cátion TRPC/genética , Canal de Cátion TRPC6 , Vasoconstritores/farmacologia
15.
Biomed Res Int ; 2018: 3293584, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29511676

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive disorder characterized by remodeling of the pulmonary vasculature and a rise in right ventricular (RV) afterload. The increased RV afterload leads to right ventricular failure (RVF) which is the reason for the high morbidity and mortality in PAH patients. The objective was to evaluate the therapeutic efficacy and antiremodeling potential of the phosphodiesterase type 5 (PDE5) inhibitor sildenafil and the soluble guanylate cyclase stimulator riociguat in a model of pressure overload RV hypertrophy induced by pulmonary artery banding (PAB). Mice subjected to PAB, one week after surgery, were treated with either sildenafil (100 mg/kg/d, n = 5), riociguat (30 mg/kg/d, n = 5), or vehicle (n = 5) for 14 days. RV function and remodeling were assessed by right heart catheterization, magnetic resonance imaging (MRI), and histomorphometry. Both sildenafil and riociguat prevented the deterioration of RV function, as determined by a decrease in RV dilation and restoration of the RV ejection fraction (EF). Although both compounds did not decrease right heart mass and cellular hypertrophy, riociguat prevented RV fibrosis induced by PAB. Both compounds diminished TGF-beta1 induced collagen synthesis of RV cardiac fibroblasts in vitro. Treatment with either riociguat or sildenafil prevented the progression of pressure overload-induced RVF, representing a novel therapeutic approach.


Assuntos
Insuficiência Cardíaca/tratamento farmacológico , Hipertensão Pulmonar/tratamento farmacológico , Pirazóis/administração & dosagem , Pirimidinas/administração & dosagem , Citrato de Sildenafila/administração & dosagem , Disfunção Ventricular Direita/tratamento farmacológico , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/genética , Modelos Animais de Doenças , Coração/efeitos dos fármacos , Coração/fisiopatologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/fisiopatologia , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Masculino , Camundongos , Inibidores da Fosfodiesterase 5/administração & dosagem , Pressão , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/fisiopatologia , Remodelação Vascular/efeitos dos fármacos , Disfunção Ventricular Direita/genética , Disfunção Ventricular Direita/patologia
16.
Sci Transl Med ; 9(416)2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29141888

RESUMO

Dyspnea is a frequent, devastating, and poorly understood symptom of advanced lung cancer. In our cohort, among 519 patients who underwent a computed tomography scan for the diagnosis of lung cancer, 250 had a mean pulmonary artery diameter of >28 mm, indicating pulmonary hypertension (PH). In human lung cancer tissue, we consistently observed increased vascular remodeling and perivascular inflammatory cell accumulation (macrophages/lymphocytes). Vascular remodeling, PH, and perivascular inflammatory cell accumulation were mimicked in three mouse models of lung cancer (LLC1, KRasLA2 , and cRaf-BxB). In contrast, NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ immunodeficient xenograft and dominant-negative IKK2 mutant triple transgenic (Sftpc-rtTA/Tet-O-Ikk2DN) mice did not develop PH. Coculturing human lung cancer cells with macrophages and lymphocytes strongly up-regulated cytokine release, provoking enhanced migration, apoptosis resistance, and phosphodiesterase 5 (PDE5)-mediated up-regulation of human lung vascular cells, which are typical features of PH. The PDE5 inhibitor sildenafil largely suppressed PH in the LLC1 model. We conclude that lung cancer-associated PH represents a distinct PH category; targeting inflammation in the microenvironment and PDE5 offers a potential therapeutic option.


Assuntos
Dispneia/fisiopatologia , Hipertensão Pulmonar/imunologia , Hipertensão Pulmonar/fisiopatologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/fisiopatologia , Animais , Apoptose/fisiologia , Linhagem Celular Tumoral , Células Cultivadas , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Células Dendríticas , Dispneia/imunologia , Ecocardiografia , Humanos , Hipertensão Pulmonar/etiologia , Imuno-Histoquímica , Técnicas In Vitro , Inflamação/imunologia , Inflamação/fisiopatologia , Neoplasias Pulmonares/complicações , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Linfócitos T/metabolismo
17.
Eur Respir J ; 48(4): 1137-1149, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27471204

RESUMO

Pulmonary arterial hypertension (PAH) is characterised by excessive pulmonary vascular remodelling involving deregulated proliferation of cells in intima, media as well as adventitia. Pulmonary arterial endothelial cell (PAEC) hyperproliferation and survival underlies the endothelial pathobiology of the disease.The indispensable involvement of Notch1 in the arterial endothelial phenotype and angiogenesis provides intriguing prospects for its involvement in the pathogenesis of PAH.We observed an increased expression of Notch1 in lungs of idiopathic PAH (IPAH) patients and hypoxia/SU5416 (SUHx) rats compared with healthy subjects. In vitro loss- and gain-of-function studies demonstrated that Notch1 increased proliferation of human PAECs (hPAECs) via downregulation of p21 and inhibited apoptosis via Bcl-2 and Survivin. Inhibition of Notch signalling using the γ-secretase inhibitor dibenzazepine dose-dependently decreased proliferation and migration of hPAECs. Notably, Notch1 expression and transcriptional activity were increased under hypoxia in hPAECs and knockdown of Notch1 inhibited hypoxia-induced proliferation of the cells. Furthermore, in vivo treatment with a γ-secretase inhibitor (AMG2008827) significantly reduced the right ventricular systolic pressure and right heart hypertrophy in SUHx rats.Here, we conclude that Notch1 plays a critical role in PAH and Notch inhibitors may be a promising therapeutic option for PAH.


Assuntos
Apoptose , Endotélio Vascular/patologia , Receptor Notch1/metabolismo , Animais , Estudos de Casos e Controles , Hipóxia Celular , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Regulação para Baixo , Ecocardiografia , Hipertensão Pulmonar Primária Familiar , Células HEK293 , Humanos , Hipertrofia , Proteínas Inibidoras de Apoptose/metabolismo , Neovascularização Patológica , Fenótipo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos , Receptores Notch/metabolismo , Transdução de Sinais , Survivina , Transcrição Gênica
18.
Int J Cardiol ; 216: 85-91, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27140341

RESUMO

BACKGROUND: Presence of pulmonary hypertension (PH) and right ventricular dysfunction worsens prognosis in patients with chronic heart failure (CHF). Preclinical and clinical studies suggest a role for the impaired nitric oxide (NO)-soluble guanylate cyclase (sGC)-cyclic guanosine monophosphate (cGMP) signaling pathway in both PH and CHF. Hence, we examined the effects of the NO-sGC-cGMP pathway modulation by the PDE5 inhibitor sildenafil or sGC stimulator riociguat on pulmonary hemodynamics and heart function in a murine model of secondary PH induced by transverse aortic constriction. METHODS: C57Bl/6N mice were subjected to transverse aortic constriction (TAC) for 6weeks to induce left heart failure and secondary PH and were subsequently treated with either sildenafil (100mg/kg/day) or riociguat (10mg/kg/day) or placebo for 2weeks. RESULTS: Six weeks after surgery, TAC induced significant left ventricular hypertrophy and dysfunction associated with development of PH. Treatment with riociguat and sildenafil neither reduced left ventricular hypertrophy nor improved its function. However, both sildenafil and riociguat ameliorated PH, reduced pulmonary vascular remodeling and improved right ventricular function. CONCLUSIONS: Thus, modulation of the NO-sGC-cGMP pathway by the PDE5 inhibitor sildenafil or sGC stimulator riociguat exerts direct beneficial effects on pulmonary hemodynamics and right ventricular function in the experimental model of secondary PH due to left heart disease and these drugs may offer a new therapeutic option for therapy of this condition.


Assuntos
GMP Cíclico/metabolismo , Hipertensão Pulmonar/tratamento farmacológico , Hipertrofia Ventricular Esquerda/fisiopatologia , Óxido Nítrico/metabolismo , Pirazóis/administração & dosagem , Pirimidinas/administração & dosagem , Citrato de Sildenafila/administração & dosagem , Guanilil Ciclase Solúvel/metabolismo , Animais , Modelos Animais de Doenças , Testes de Função Cardíaca/efeitos dos fármacos , Humanos , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/metabolismo , Hipertrofia Ventricular Esquerda/complicações , Hipertrofia Ventricular Esquerda/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pirazóis/farmacologia , Pirimidinas/farmacologia , Transdução de Sinais , Citrato de Sildenafila/farmacologia , Resultado do Tratamento
19.
PLoS One ; 10(6): e0129327, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26058042

RESUMO

RATIONALE: Chronic obstructive pulmonary disease (COPD) is a widespread disease, with no curative therapies available. Recent findings suggest a key role of NO and sGC-cGMP signaling for the pathogenesis of the disease. Previous data suggest a downregulation/inactivation of the cGMP producing soluble guanylate cyclase, and sGC stimulation prevented cigarette smoke-induced emphysema and pulmonary hypertension (PH) in mice. We thus aimed to investigate if the inhibition of the cGMP degrading phosphodiesterase (PDE)5 has similar effects. Results were compared to the effects of a PDE 4 inhibitor (cAMP elevating) and a combination of both. METHODS: C57BL6/J mice were chronically exposed to cigarette smoke and in parallel either treated with Tadalafil (PDE5 inhibitor), Piclamilast (PDE4 inhibitor) or both. Functional measurements (lung compliance, hemodynamics) and structural investigations (alveolar and vascular morphometry) as well as the heart ratio were determined after 6 months of tobacco smoke exposure. In addition, the number of alveolar macrophages in the respective lungs was counted. RESULTS: Preventive treatment with Tadalafil, Piclamilast or a combination of both almost completely prevented the development of emphysema, the increase in lung compliance, tidal volume, structural remodeling of the lung vasculature, right ventricular systolic pressure, and right ventricular hypertrophy induced by cigarette smoke exposure. Single, but not combination treatment prevented or reduced smoke-induced increase in alveolar macrophages. CONCLUSION: Cigarette smoke-induced emphysema and PH could be prevented by inhibition of the phosphodiesterases 4 and 5 in mice.


Assuntos
Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/tratamento farmacológico , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 5/farmacologia , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/tratamento farmacológico , Fumaça/efeitos adversos , Animais , Benzamidas/farmacologia , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Modelos Animais de Doenças , Hipertensão Pulmonar/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Complacência Pulmonar/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Enfisema Pulmonar/metabolismo , Piridinas/farmacologia , Fumar/efeitos adversos , Tadalafila/farmacologia
20.
Circulation ; 129(14): 1510-23, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24470481

RESUMO

BACKGROUND: Pulmonary hypertension (PH) is a life-threatening disease characterized by vascular remodeling and increased pulmonary vascular resistance. Chronic alveolar hypoxia in animals is often used to decipher pathways being regulated in PH. Here, we aimed to investigate whether chronic hypoxia-induced PH in mice can be reversed by reoxygenation and whether possible regression can be used to identify pathways activated during the reversal and development of PH by genome-wide screening. METHODS AND RESULTS: Mice exposed to chronic hypoxia (21 days, 10% O2) were reoxygenated for up to 42 days. Full reversal of PH during reoxygenation was evident by normalized right ventricular pressure, right heart hypertrophy, and muscularization of small pulmonary vessels. Microarray analysis from these mice revealed s-adenosylmethionine decarboxylase 1 (AMD-1) as one of the most downregulated genes. In situ hybridization localized AMD-1 in pulmonary vessels. AMD-1 silencing decreased the proliferation of pulmonary arterial smooth muscle cells and diminished phospholipase Cγ1 phosphorylation. Compared with the respective controls, AMD-1 depletion by heterozygous in vivo knockout or pharmacological inhibition attenuated PH during chronic hypoxia. A detailed molecular approach including promoter analysis showed that AMD-1 could be regulated by early growth response 1, transcription factor, as a consequence of epidermal growth factor stimulation. Key findings from the animal model were confirmed in human idiopathic pulmonary arterial hypertension. CONCLUSIONS: Our study indicates that genome-wide screening in mice from a PH model in which full reversal of PH occurs can be useful to identify potential key candidates for the reversal and development of PH. Targeting AMD-1 may represent a promising strategy for PH therapy.


Assuntos
Adenosilmetionina Descarboxilase/metabolismo , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Pulmão/irrigação sanguínea , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Transdução de Sinais/fisiologia , Adenosilmetionina Descarboxilase/deficiência , Adenosilmetionina Descarboxilase/genética , Adulto , Idoso , Animais , Apoptose , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Feminino , Humanos , Hipertensão Pulmonar/etiologia , Hipóxia/complicações , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise em Microsséries , Pessoa de Meia-Idade , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA