Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657956

RESUMO

BACKGROUND AND PURPOSE: The analgesic action of paracetamol involves KV7 channels, and its metabolite N-acetyl-p-benzo quinone imine (NAPQI), a cysteine modifying reagent, was shown to increase currents through such channels in nociceptors. Modification of cysteine residues by N-ethylmaleimide, H2O2, or nitric oxide has been found to modulate currents through KV7 channels. The study aims to identify whether, and if so which, cysteine residues in neuronal KV7 channels might be responsible for the effects of NAPQI. EXPERIMENTAL APPROACH: To address this question, we used a combination of perforated patch-clamp recordings, site-directed mutagenesis, and mass spectrometry applied to recombinant KV7.1 to KV7.5 channels. KEY RESULTS: Currents through the cardiac subtype KV7.1 were reduced by NAPQI. Currents through all other subtypes were increased, either by an isolated shift of the channel voltage dependence to more negative values (KV7.3) or by such a shift combined with increased maximal current levels (KV7.2, KV7.4, KV7.5). A stretch of three cysteine residues in the S2-S3 linker region of KV7.2 was necessary and sufficient to mediate these effects. CONCLUSION AND IMPLICATION: The paracetamol metabolite N-acetyl-p-benzo quinone imine (NAPQI) modifies cysteine residues of KV7 subunits and reinforces channel gating in homomeric and heteromeric KV7.2 to KV7.5, but not in KV7.1 channels. In KV7.2, a triple cysteine motif located within the S2-S3 linker region mediates this reinforcement that can be expected to reduce the excitability of nociceptors and to mediate antinociceptive actions of paracetamol.

2.
Br J Pharmacol ; 164(5): 1522-33, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21557728

RESUMO

BACKGROUND AND PURPOSE: P2Y(1) , P2Y(2) , P2Y(4) , P2Y(12) and P2Y(13) receptors for nucleotides have been reported to mediate presynaptic inhibition, but unequivocal evidence for facilitatory presynaptic P2Y receptors is not available. The search for such receptors was the purpose of this study. EXPERIMENTAL APPROACH: In primary cultures of rat superior cervical ganglion neurons and in PC12 cell cultures, currents were recorded via the perforated patch clamp technique, and the release of [(3) H]-noradrenaline was determined. KEY RESULTS: ADP, 2-methylthio-ATP and ATP enhanced stimulation-evoked (3) H overflow from superior cervical ganglion neurons, treated with pertussis toxin to prevent the signalling of inhibitory G proteins. This effect was abolished by P2Y(1) antagonists and by inhibition of phospholipase C, but not by inhibition of protein kinase C or depletion of intracellular Ca(2+) stores. ADP and a specific P2Y(1) agonist caused inhibition of Kv7 channels, and this was prevented by a respective antagonist. In neurons not treated with pertussis toxin, (3) H overflow was also enhanced by a specific P2Y(1) agonist and by ADP, but only when the P2Y(12) receptors were blocked. ADP also enhanced K(+) -evoked (3) H overflow from PC12 cells treated with pertussis toxin, but only in a clone expressing recombinant P2Y(1) receptors. CONCLUSIONS AND IMPLICATIONS: These results demonstrate that presynaptic P2Y(1) receptors mediate facilitation of transmitter release from sympathetic neurons most likely through inhibition of Kv7 channels.


Assuntos
Neurônios/metabolismo , Neurotransmissores/metabolismo , Norepinefrina/metabolismo , Receptores Pré-Sinápticos/fisiologia , Receptores Purinérgicos P2Y1/fisiologia , Gânglio Cervical Superior/metabolismo , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/farmacologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Animais Recém-Nascidos , Técnicas de Cultura de Células , Clonagem Molecular , Estimulação Elétrica , Proteínas de Fluorescência Verde/genética , Canais de Potássio KCNQ/antagonistas & inibidores , Dose Máxima Tolerável , Neurônios/efeitos dos fármacos , Células PC12 , Técnicas de Patch-Clamp , Toxina Pertussis/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Pré-Sinápticos/genética , Receptores Pré-Sinápticos/metabolismo , Receptores Purinérgicos P2Y1/genética , Receptores Purinérgicos P2Y1/metabolismo , Gânglio Cervical Superior/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Tionucleotídeos/farmacologia
3.
J Physiol ; 588(Pt 19): 3713-25, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20679351

RESUMO

Molecularly defined P2Y receptor subtypes are known to regulate the functions of neurons through an inhibition of K(V)7 K(+) and Ca(V)2 Ca(2+) channels and via an activation or inhibition of Kir3 channels. Here, we searched for additional neuronal ion channels as targets for P2Y receptors. Rat P2Y(1) receptors were expressed in PC12 cells via an inducible expression system, and the effects of nucleotides on membrane currents and intracellular Ca(2+) were investigated. At a membrane potential of 30 mV, ADP induced transient outward currents in a concentration-dependent manner with half-maximal effects at 4 µm. These currents had reversal potentials close to the K(+) equilibrium potential and changed direction when extracellular Na(+) was largely replaced by K(+), but remained unaltered when extracellular Cl() was changed. Currents were abolished by P2Y(1) antagonists and by blockade of phospholipase C. ADP also caused rises in intracellular Ca(2+), and ADP-evoked currents were abolished when inositol trisphosphate-sensitive Ca(2+) stores were depleted. Blockers of K(Ca)2, but not those of K(Ca)1.1 or K(Ca)3.1, channels largely reduced ADP-evoked currents. In hippocampal neurons, ADP also triggered outward currents at 30 mV which were attenuated by P2Y(1) antagonists, depletion of Ca(2+) stores, or a blocker of K(Ca)2 channels. These results demonstrate that activation of neuronal P2Y(1) receptors may gate Ca(2+)-dependent K(+) (K(Ca)2) channels via phospholipase C-dependent increases in intracellular Ca(2+) and thereby define an additional class of neuronal ion channels as novel effectors for P2Y receptors. This mechanism may form the basis for the control of synaptic plasticity via P2Y(1) receptors.


Assuntos
Neurônios/fisiologia , Canais de Potássio Cálcio-Ativados/fisiologia , Receptores Purinérgicos P2Y1/fisiologia , Difosfato de Adenosina/farmacologia , Animais , Axônios/fisiologia , Fenômenos Eletrofisiológicos , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/fisiologia , Canais de Potássio KCNQ/genética , Canais de Potássio KCNQ/fisiologia , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/efeitos dos fármacos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/fisiologia , Neurônios/efeitos dos fármacos , Células PC12 , Técnicas de Patch-Clamp , Potássio/farmacologia , Canais de Potássio Cálcio-Ativados/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores Acoplados a Proteínas G/fisiologia , Receptores Purinérgicos P2Y1/efeitos dos fármacos , Fosfolipases Tipo C/fisiologia
4.
Mol Pharmacol ; 68(5): 1387-96, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16099842

RESUMO

Presynaptic inhibition of transmitter release is commonly mediated by a direct interaction between G protein betagamma subunits and voltage-activated Ca2+ channels. To search for an alternative pathway, the mechanisms by which presynaptic bradykinin receptors mediate an inhibition of noradrenaline release from rat superior cervical ganglion neurons were investigated. The peptide reduced noradrenaline release triggered by K+-depolarization but not that evoked by ATP, with Ca2+ channels being blocked by Cd2+. Bradykinin also reduced Ca2+ current amplitudes measured at neuronal somata, and this effect was pertussis toxin-insensitive, voltage-independent, and developed slowly within 1 min. The inhibition of Ca2+ currents was abolished by a phospholipase C inhibitor, but it was not altered by a phospholipase A2 inhibitor, by the depletion of intracellular Ca2+ stores, or by the inactivation of protein kinase C or Rho proteins. In whole-cell recordings, the reduction of Ca2+ currents was irreversible but became reversible when 4 mM ATP or 0.2 mM dioctanoyl phosphatidylinositol-4,5-bisphosphate was included in the pipette solution. In contrast, the effect of bradykinin was entirely reversible in perforated-patch recordings but became irreversible when the resynthesis of phosphatidylinositol-4,5-bisphosphate was blocked. Thus, the inhibition of Ca2+ currents by bradykinin involved a consumption of phosphatidylinositol-4,5-bisphosphate by phospholipase C but no downstream effectors of this enzyme. The reduction of noradrenaline release by bradykinin was also abolished by the inhibition of phospholipase C or of the resynthesis of phosphatidylinositol-4,5-bisphosphate. These results show that the presynaptic inhibition was mediated by a closure of voltage-gated Ca2+ channels through depletion of membrane phosphatidylinositol bisphosphates via phospholipase C.


Assuntos
Canais de Cálcio Tipo N/fisiologia , Fosfatidilinositol 4,5-Difosfato/fisiologia , Receptores Pré-Sinápticos/fisiologia , Transmissão Sináptica , Fosfolipases Tipo C/fisiologia , 1-Fosfatidilinositol 4-Quinase/fisiologia , Trifosfato de Adenosina/farmacologia , Animais , Bradicinina/farmacologia , Cádmio/farmacologia , Canais de Cálcio Tipo N/efeitos dos fármacos , Norepinefrina/metabolismo , Toxina Pertussis/farmacologia , Fosfatidilinositol 4,5-Difosfato/antagonistas & inibidores , Potássio/farmacologia , Proteína Quinase C/fisiologia , Ratos , Ratos Sprague-Dawley , Gânglio Cervical Superior/fisiologia , Fosfolipases Tipo C/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA