Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 10(1): 475, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474522

RESUMO

Automated detection of lesions using artificial intelligence creates new standards in medical imaging. For people with epilepsy, automated detection of focal cortical dysplasias (FCDs) is widely used because subtle FCDs often escape conventional neuroradiological diagnosis. Accurate recognition of FCDs, however, is of outstanding importance for affected people, as surgical resection of the dysplastic cortex is associated with a high chance of postsurgical seizure freedom. Here, we make publicly available a dataset of 85 people affected by epilepsy due to FCD type II and 85 healthy control persons. We publish 3D-T1 and 3D-FLAIR, manually labeled regions of interest, and carefully selected clinical features. The open presurgery MRI dataset may be used to validate existing automated algorithms of FCD detection as well as to create new approaches. Most importantly, it will enable comparability of already existing approaches and support a more widespread use of automated lesion detection tools.


Assuntos
Epilepsia , Displasia Cortical Focal , Humanos , Inteligência Artificial , Epilepsia/diagnóstico por imagem , Epilepsia/cirurgia , Displasia Cortical Focal/diagnóstico por imagem , Displasia Cortical Focal/cirurgia , Imageamento por Ressonância Magnética
2.
Acta Neuropathol ; 142(4): 729-759, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34292399

RESUMO

Neuronal dysfunction due to iron accumulation in conjunction with reactive oxygen species (ROS) could represent an important, yet underappreciated, component of the epileptogenic process. However, to date, alterations in iron metabolism in the epileptogenic brain have not been addressed in detail. Iron-related neuropathology and antioxidant metabolic processes were investigated in resected brain tissue from patients with temporal lobe epilepsy and hippocampal sclerosis (TLE-HS), post-mortem brain tissue from patients who died after status epilepticus (SE) as well as brain tissue from the electrically induced SE rat model of TLE. Magnetic susceptibility of the presumed seizure-onset zone from three patients with focal epilepsy was compared during and after seizure activity. Finally, the cellular effects of iron overload were studied in vitro using an acute mouse hippocampal slice preparation and cultured human fetal astrocytes. While iron-accumulating neurons had a pyknotic morphology, astrocytes appeared to acquire iron-sequestrating capacity as indicated by prominent ferritin expression and iron retention in the hippocampus of patients with SE or TLE. Interictal to postictal comparison revealed increased magnetic susceptibility in the seizure-onset zone of epilepsy patients. Post-SE rats had consistently higher hippocampal iron levels during the acute and chronic phase (when spontaneous recurrent seizures are evident). In vitro, in acute slices that were exposed to iron, neurons readily took up iron, which was exacerbated by induced epileptiform activity. Human astrocyte cultures challenged with iron and ROS increased their antioxidant and iron-binding capacity, but simultaneously developed a pro-inflammatory phenotype upon chronic exposure. These data suggest that seizure-mediated, chronic neuronal iron uptake might play a role in neuronal dysfunction/loss in TLE-HS. On the other hand, astrocytes sequester iron, specifically in chronic epilepsy. This function might transform astrocytes into a highly resistant, pro-inflammatory phenotype potentially contributing to pro-epileptogenic inflammatory processes.


Assuntos
Epilepsia do Lobo Temporal/complicações , Hipocampo/metabolismo , Distúrbios do Metabolismo do Ferro/etiologia , Ferro/metabolismo , Estado Epiléptico/complicações , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Estudos de Casos e Controles , Técnicas de Cultura de Células , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/metabolismo , Epilepsia do Lobo Temporal/patologia , Feminino , Humanos , Distúrbios do Metabolismo do Ferro/patologia , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo/fisiologia , Ratos , Estado Epiléptico/metabolismo , Estado Epiléptico/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA