RESUMO
Peptide vaccination for cancer immunotherapy requires identification of peptide epitopes derived from antigenic proteins associated with the tumor. Such peptides can bind to MHC proteins (MHC molecules) on the tumor-cell surface, with the potential to initiate a host immune response against the tumor. Computer prediction of peptide epitopes can be based on known motifs for peptide sequences that bind to a certain MHC molecule, on algorithms using experimental data as a training set, or on structure-based approaches. We have developed an algorithm, which we refer to as PePSSI, for flexible structural prediction of peptide binding to MHC molecules. Here, we have applied this algorithm to identify peptide epitopes (of nine amino acids, the common length) from the sequence of the cancer-testis antigen KU-CT-1, based on the potential of these peptides to bind to the human MHC molecule HLA-A2. We compared the PePSSI predictions with those of other algorithms and found that several peptides predicted to be strong HLA-A2 binders by PePSSI were similarly predicted by another structure-based algorithm, PREDEP. The results show how structure-based prediction can identify potential peptide epitopes without known binding motifs and suggest that side chain orientation in binding peptides may be obtained using PePSSI.
Assuntos
Algoritmos , Antígenos de Neoplasias/química , Vacinas Anticâncer/química , Epitopos/química , Antígenos de Histocompatibilidade Classe I/química , Fragmentos de Peptídeos/química , Análise de Sequência de Proteína/métodos , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas do Domínio Armadillo/química , Vacinas Anticâncer/uso terapêutico , Desenho de Fármacos , Antígeno HLA-A2/química , Humanos , Masculino , Dados de Sequência Molecular , Relação Estrutura-Atividade , Neoplasias Testiculares/prevenção & controleRESUMO
Peptide binding to class I major histocompatibility complex (MHCI) molecules is a key step in the immune response and the structural details of this interaction are of importance in the design of peptide vaccines. Algorithms based on primary sequence have had success in predicting potential antigenic peptides for MHCI, but such algorithms have limited accuracy and provide no structural information. Here, we present an algorithm, PePSSI (peptide-MHC prediction of structure through solvated interfaces), for the prediction of peptide structure when bound to the MHCI molecule, HLA-A2. The algorithm combines sampling of peptide backbone conformations and flexible movement of MHC side chains and is unique among other prediction algorithms in its incorporation of explicit water molecules at the peptide-MHC interface. In an initial test of the algorithm, PePSSI was used to predict the conformation of eight peptides bound to HLA-A2, for which X-ray data are available. Comparison of the predicted and X-ray conformations of these peptides gave RMSD values between 1.301 and 2.475 A. Binding conformations of 266 peptides with known binding affinities for HLA-A2 were then predicted using PePSSI. Structural analyses of these peptide-HLA-A2 conformations showed that peptide binding affinity is positively correlated with the number of peptide-MHC contacts and negatively correlated with the number of interfacial water molecules. These results are consistent with the relatively hydrophobic binding nature of the HLA-A2 peptide binding interface. In summary, PePSSI is capable of rapid and accurate prediction of peptide-MHC binding conformations, which may in turn allow estimation of MHCI-peptide binding affinity.