Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cachexia Sarcopenia Muscle ; 11(1): 195-207, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31436048

RESUMO

BACKGROUND: The majority of patients with advanced cancer develop cachexia, a weight loss syndrome that severely reduces quality of life and limits survival. Our understanding of the underlying mechanisms that cause the condition is limited, and there are currently no treatment options that can completely reverse cachexia. Several tumour-derived factors and inflammatory mediators have been suggested to contribute to weight loss in cachectic patients. However, inconsistencies between studies are recurrent. Activin A and interleukin 6 (IL-6) are among the best studied factors that seem to be important, and several studies support their individual role in cachexia development. METHODS: We investigated the interplay between activin A and IL-6 in the cachexia-inducing TOV21G cell line, both in culture and in tumours in mice. We previously found that the human TOV21G cells secrete IL-6 that induces autophagy in reporter cells and cachexia in mice. Using this established cachexia cell model, we targeted autocrine activin A by genetic, chemical, and biological approaches. The secretion of IL-6 from the cancer cells was determined in both culture and tumour-bearing mice by a species-specific ELISA. Autophagy reporter cells were used to monitor the culture medium for autophagy-inducing activities, and muscle mass changes were evaluated in tumour-bearing mice. RESULTS: We show that activin A acts in an autocrine manner to promote the synthesis and secretion of IL-6 from cancer cells. By inhibiting activin A signalling, the production of IL-6 from the cancer cells is reduced by 40-50% (up to 42% reduction on protein level, P = 0.0048, and 48% reduction on mRNA level, P = 0.0308). Significantly reduced IL-6 secretion (P < 0.05) from the cancer cells is consistently observed when using biological, chemical, and genetic approaches to interfere with the autocrine activin A loop. Inhibiting activin signalling also reduces the ability of the cancer cells to accelerate autophagy in non-cancerous cells (up to 43% reduced autophagy flux, P = 0.0006). Coherent to the in vitro data, the use of an anti-activin receptor 2 antibody in cachectic tumour-bearing mice reduces serum levels of cancer cell-derived IL-6 by 62% (from 417 to 159 pg/mL, P = 0.03), and, importantly, it reverses cachexia and counteracts loss of all measured muscle groups (P < 0.0005). CONCLUSIONS: Our data support a functional link between activin A and IL-6 signalling pathways and indicate that interference with activin A-induced IL-6 secretion from the tumour has therapeutic potential for cancer-induced cachexia.


Assuntos
Ativinas/metabolismo , Comunicação Autócrina/fisiologia , Autofagia/genética , Caquexia/genética , Interleucina-6/metabolismo , Neoplasias Ovarianas/genética , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Neoplasias Ovarianas/patologia , Transdução de Sinais
2.
J Cachexia Sarcopenia Muscle ; 9(1): 93-105, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29214748

RESUMO

BACKGROUND: Sarcopenia is defined as the age-related loss of skeletal muscle mass and function. While all humans lose muscle with age, 2-5% of elderly adults develop functional consequences (disabilities). The aim of this study was to investigate muscle myogenesis in healthy elderly adults, with or without sarcopenia, compared with middle-aged controls using both in vivo and in vitro approaches to explore potential biomarker or causative molecular pathways associated with sarcopenic versus non-sarcopenic skeletal muscle phenotypes during ageing. METHODS: Biomarkers of multiple molecular pathways associated with muscle regeneration were analysed using quantitative polymerase chain reaction in quadriceps muscle samples obtained from healthy elderly sarcopenic (HSE, n = 7) or non-sarcopenic (HENS, n = 21) and healthy middle-aged control (HMC, n = 22) groups. An in vitro system of myogenesis (using myoblasts from human donors aged 17-83 years) was used to mimic the environmental challenges of muscle regeneration over time. RESULTS: The muscle biopsies showed evidence of satellite cell activation in HENS (Pax3, P < 0.01, Pax7, P < 0.0001) compared with HMC. Early myogenesis markers Myogenic Differentiation 1 (MyoD1) and Myogenic factor 5 (Myf5) (P < 0.0001) and the late myogenesis marker myogenin (MyoG) (P < 0.01) were increased in HENS. In addition, there was a 30-fold upregulation of TNF-α in HENS compared with HMC (P < 0.0001). The in vitro system demonstrated age-related upregulation of pro-inflammatory cytokines (2-fold upregulation of interleukin (IL)-6, IL-8 mRNA, increased secretion of tumor necrosis factor-α (TNF-α) and IL-6, all P < 0.05) associated with impaired kinetics of myotube differentiation. The HSE biopsy samples showed satellite cell activation (Pax7, P < 0.05) compared with HMC. However, no significant upregulation of the early myogenesis (MyoD and Myf5) markers was evident; only the late myogenesis marker myogenin was upregulated (P < 0.05). Higher activation of the oxidative stress pathway was found in HENS compared with the HSE group. In contrast, there was 10-fold higher upregulation of HSPA1A a stress-induced chaperone acting upon misfolded proteins in HSE compared with the HENS group. CONCLUSIONS: Both pathological and adaptive processes are active in skeletal muscle during healthy ageing. Muscle regeneration pathways are activated during healthy ageing, but there is evidence of dysregulation in sarcopenia. In addition, increased cellular stress, with an impaired oxidative-stress and mis-folded protein response (HSPA1A), may be associated with the development of sarcopenia. The in vitro system of young and old myoblasts replicated some of the differences between young and old muscle.


Assuntos
Envelhecimento Saudável , Músculo Esquelético/fisiopatologia , Regeneração/fisiologia , Sarcopenia/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino
3.
Proc Natl Acad Sci U S A ; 114(47): 12448-12453, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29109273

RESUMO

The TGF-ß family ligands myostatin, GDF11, and activins are negative regulators of skeletal muscle mass, which have been reported to primarily signal via the ActRIIB receptor on skeletal muscle and thereby induce muscle wasting described as cachexia. Use of a soluble ActRIIB-Fc "trap," to block myostatin pathway signaling in normal or cachectic mice leads to hypertrophy or prevention of muscle loss, perhaps suggesting that the ActRIIB receptor is primarily responsible for muscle growth regulation. Genetic evidence demonstrates however that both ActRIIB- and ActRIIA-deficient mice display a hypertrophic phenotype. Here, we describe the mode of action of bimagrumab (BYM338), as a human dual-specific anti-ActRIIA/ActRIIB antibody, at the molecular and cellular levels. As shown by X-ray analysis, bimagrumab binds to both ActRIIA and ActRIIB ligand binding domains in a competitive manner at the critical myostatin/activin binding site, hence preventing signal transduction through either ActRII. Myostatin and the activins are capable of binding to both ActRIIA and ActRIIB, with different affinities. However, blockade of either single receptor through the use of specific anti-ActRIIA or anti-ActRIIB antibodies achieves only a partial signaling blockade upon myostatin or activin A stimulation, and this leads to only a small increase in muscle mass. Complete neutralization and maximal anabolic response are achieved only by simultaneous blockade of both receptors. These findings demonstrate the importance of ActRIIA in addition to ActRIIB in mediating myostatin and activin signaling and highlight the need for blocking both receptors to achieve a strong functional benefit.


Assuntos
Receptores de Activinas Tipo II/antagonistas & inibidores , Anticorpos Bloqueadores/farmacologia , Anticorpos Monoclonais/farmacologia , Hipertrofia/induzido quimicamente , Músculo Esquelético/efeitos dos fármacos , Receptores de Activinas Tipo II/metabolismo , Ativinas/metabolismo , Animais , Anticorpos Bloqueadores/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Proteínas Morfogenéticas Ósseas/metabolismo , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Fatores de Diferenciação de Crescimento/metabolismo , Células HEK293 , Humanos , Hipertrofia/patologia , Masculino , Camundongos , Camundongos SCID , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Miostatina/metabolismo , Ratos , Ratos Wistar , Proteínas Recombinantes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Síndrome de Emaciação/tratamento farmacológico , Síndrome de Emaciação/patologia
4.
J Cachexia Sarcopenia Muscle ; 8(4): 567-582, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28296247

RESUMO

BACKGROUND: Cancer cachexia (cancer-induced muscle wasting) is found in a subgroup of cancer patients leaving the patients with a poor prognosis for survival due to a lower tolerance of the chemotherapeutic drug. The cause of the muscle wasting in these patients is not fully understood, and no predictive biomarker exists to identify these patients early on. Skeletal muscle loss is an inevitable consequence of advancing age. As cancer frequently occurs in old age, identifying and differentiating the molecular mechanisms mediating muscle wasting in cancer cachexia vs. age-related sarcopenia are a challenge. However, the ability to distinguish between them is critical for early intervention, and simple measures of body weight may not be sufficiently sensitive to detect cachexia early. METHODS: We used a range of omics approaches: (i) undepleted proteome was quantified using advanced high mass accuracy mass spectrometers in SWATH-MS acquisition mode; (ii) phospho epitopes were quantified using protein arrays; and (iii) morphology was assessed using fluorescent microscopy. RESULTS: We quantified the soluble proteome of muscle biopsies from cancer cachexia patients and compared them with cohorts of cancer patients and healthy individuals with and without age-related muscle loss (aka age-related sarcopenia). Comparing the proteomes of these cohorts, we quantified changes in muscle contractile myosins and energy metabolism allowing for a clear identification of cachexia patients. In an in vitro time lapse experiment, we mimicked cancer cachexia and identified signal transduction pathways governing cell fusion to play a pivotal role in preventing muscle regeneration. CONCLUSIONS: The work presented here lays the foundation for further understanding of muscle wasting diseases and holds the promise of overcoming ambiguous weight loss as a measure for defining cachexia to be replaced by a precise protein signature.


Assuntos
Caquexia/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteoma/análise , Sarcopenia/metabolismo , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Envelhecimento/patologia , Caquexia/patologia , Células Cultivadas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Musculares/análise , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Projetos Piloto , Sarcopenia/patologia
5.
Aging (Albany NY) ; 8(8): 1690-702, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27454226

RESUMO

Muscle wasting in old age or cancer may result from failed myofiber regeneration and/or accelerated atrophy. This study aimed to determine from transcriptomic analysis of human muscle the integrity of the cellular stress response system in relation to satellite cell differentiation or apoptosis in patients with cancer (weight-stable (CWS) or weight-losing (CWL)) or healthy elderly (HE) when compared with healthy middle-aged controls (HMA). 28 patients with cancer (CWS: 18 and CWL: 10), HE: 21 and HMA: 20 underwent biopsy of quadriceps muscle. The expression of transcription factors for muscle regeneration (Pax3, Pax7 and MyoD) was increased in CWS and HE compared with HMA (p≤0.001). In contrast, the expression of the late myogenic differentiation marker MyoG was reduced in CWS and CWL but increased in HE (p≤0.0001). Bax was significantly increased in CWS, CWL and HE (p≤0.0001). Expression of the oxidative defense genes SOD2, GCLM, and Nrf2 was decreased in CWS and CWL but increased in HE (p≤0.0001). There is evidence for blockade of satellite cell maturation, upregulation of apoptosis and reduced oxidative defense in the muscle of cancer patients. In the healthy elderly the potential for differentiation and oxidative defense is maintained.


Assuntos
Caquexia/metabolismo , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Neoplasias/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Idoso , Idoso de 80 Anos ou mais , Caquexia/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Neoplasias/patologia , Células Satélites de Músculo Esquelético/patologia
6.
Anal Biochem ; 343(2): 244-55, 2005 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-15963938

RESUMO

Deubiquitinating enzymes (DUBs) catalyze the removal of attached ubiquitin molecules from amino groups of target proteins. The large family of DUBs plays an important role in the regulation of the intracellular homeostasis of different proteins and influences therefore key events such as cell division, apoptosis, etc. The DUB family members UCH-L3 and USP2 are believed to inhibit the degradation of various tumor-growth-promoting proteins by removing the trigger for degradation. Inhibitors of these enzymes should therefore lead to enhanced degradation of oncoproteins and may thus stop tumor growth. To develop an enzymatic assay for the search of UCH-L3 and USP2 inhibitors, C-terminally labeled ubiquitin substrates were enzymatically synthesized. We have used the ubiquitin-activating enzyme E1 and one of the ubiquitin-conjugating enzymes E2 to attach a fluorescent lysine derivative to the C terminus of ubiquitin. Since only the epsilon-NH(2) group of the lysine derivatives was free and reactive, the conjugates closely mimic the isopeptide bond between the ubiquitin and the lysine side chains of the targeted proteins. Various substrates were synthesized by this approach and characterized enzymatically with the two DUBs. The variant consisting of the fusion protein between the large N-terminal NusA tag and the ubiquitin which was modified with alpha-NH(2)-tetramethylrhodamin-lysine, was found to give the highest dynamic range in a fluorescence polarization readout. Therefore we have chosen this substrate for the development of a miniaturized, fluorescence-polarization-based high-throughput screening assay.


Assuntos
Corantes Fluorescentes/síntese química , Ubiquitina/análogos & derivados , Ubiquitina/síntese química , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Endopeptidases/química , Endopeptidases/metabolismo , Corantes Fluorescentes/química , Cinética , Lisina/química , Lisina/metabolismo , Rodaminas/química , Rodaminas/metabolismo , Fatores de Tempo , Ubiquitina/química , Ubiquitina Tiolesterase/química , Ubiquitina Tiolesterase/metabolismo
7.
J Biomol Screen ; 9(7): 569-77, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15475476

RESUMO

The beta isoform of the heat shock protein 90 (Hsp90beta) is a cellular chaperone required for the maturation of key proteins involved in growth response to extracellular factors as well as oncogenic transformation of various cell types. Compounds that inhibit the function of Hsp90beta are thus believed to have potential as novel anticancer drugs. To date, 2 fungal metabolites are known to inhibit Hsp90beta. However, insolubility and liver toxicity restrict the clinical use of these molecules. The limitation to identify novel and safe Hsp90beta inhibitors is that presently no suitable high-throughput screening assay is available. Here, the authors present the development of a homogenous assay based on 2-dimensional fluorescence intensity distribution analysis of tetramethyl-rhodamine (TAMRA)-labeled radicicol bound to Hsp90beta. Furthermore, the assay has been shown to be compatible with the confocal nanoscreening platform Mark II from Evotec-Technologies and can therefore be used for miniaturized high-throughput screening. The applied detection technology provides critical information about the nature of biomolecular interaction at the thermodynamic equilibrium, such as affinity constants and stoichiometric parameters of the binding. The assay is used to identify small molecular weight compounds displacing TAMRA-radicicol. Such compounds are believed to be important molecules in the discovery of novel anticancer drugs.


Assuntos
Bioensaio/métodos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Fluorescência , Humanos , Cinética , Lactonas/química , Macrolídeos , Miniaturização , Estrutura Molecular , Nanotecnologia , Ligação Proteica , Ensaio Radioligante
8.
J Biol Chem ; 279(47): 49330-7, 2004 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-15337744

RESUMO

The crystal structure of the ligand binding domain (LBD) of the estrogen-related receptor alpha (ERRalpha, NR3B1) complexed with a coactivator peptide from peroxisome proliferator-activated receptor coactivator-1alpha (PGC-1alpha) reveals a transcriptionally active conformation in the absence of a ligand. This is the first x-ray structure of ERRalpha LBD, solved to a resolution of 2.5 A, and the first structure of a PGC-1alpha complex. The putative ligand binding pocket (LBP) of ERRalpha is almost completely occupied by side chains, in particular with the bulky side chain of Phe328 (corresponding to Ala272 in ERRgamma and Ala350 in estrogen receptor alpha). Therefore, a ligand of a size equivalent to more than approximately 4 carbon atoms could only bind in the LBP, if ERRalpha would undergo a major conformational change (in particular the ligand would displace H12 from its agonist position). The x-ray structure thus provides strong evidence for ligand-independent transcriptional activation by ERRalpha. The interactions of PGC-1alpha with ERRalpha also reveal for the first time the atomic details of how a coactivator peptide containing an inverted LXXLL motif (namely a LLXYL motif) binds to a LBD. In addition, we show that a PGC-1alpha peptide containing this nuclear box motif from the L3 site binds ERRalpha LBD with a higher affinity than a peptide containing a steroid receptor coactivator-1 motif and that the affinity is further enhanced when all three leucine-rich regions of PGC-1alpha are present.


Assuntos
Proteínas de Choque Térmico/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores de Estrogênio/química , Fatores de Transcrição/metabolismo , Ativação Transcricional , Motivos de Aminoácidos , Animais , Sítios de Ligação , Carbono/química , Linhagem Celular , Núcleo Celular/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Histona Acetiltransferases , Humanos , Insetos , Leucina/química , Ligantes , Modelos Moleculares , Mutação , Coativador 1 de Receptor Nuclear , Peptídeos/química , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Estrogênio/metabolismo , Temperatura , Receptor ERRalfa Relacionado ao Estrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA