Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Imaging ; 10(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38921624

RESUMO

BACKGROUND: After breast conserving surgery (BCS), surgical clips indicate the tumor bed and, thereby, the most probable area for tumor relapse. The aim of this study was to investigate whether a U-Net-based deep convolutional neural network (dCNN) may be used to detect surgical clips in follow-up mammograms after BCS. METHODS: 884 mammograms and 517 tomosynthetic images depicting surgical clips and calcifications were manually segmented and classified. A U-Net-based segmentation network was trained with 922 images and validated with 394 images. An external test dataset consisting of 39 images was annotated by two radiologists with up to 7 years of experience in breast imaging. The network's performance was compared to that of human readers using accuracy and interrater agreement (Cohen's Kappa). RESULTS: The overall classification accuracy on the validation set after 45 epochs ranged between 88.2% and 92.6%, indicating that the model's performance is comparable to the decisions of a human reader. In 17.4% of cases, calcifications have been misclassified as post-operative clips. The interrater reliability of the model compared to the radiologists showed substantial agreement (κreader1 = 0.72, κreader2 = 0.78) while the readers compared to each other revealed a Cohen's Kappa of 0.84, thus showing near-perfect agreement. CONCLUSIONS: With this study, we show that surgery clips can adequately be identified by an AI technique. A potential application of the proposed technique is patient triage as well as the automatic exclusion of post-operative cases from PGMI (Perfect, Good, Moderate, Inadequate) evaluation, thus improving the quality management workflow.

2.
Eur Radiol ; 34(4): 2394-2404, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37735276

RESUMO

OBJECTIVE: To characterize the use and impact of radiation dose reduction techniques in actual practice for routine abdomen CT. METHODS: We retrospectively analyzed consecutive routine abdomen CT scans in adults from a large dose registry, contributed by 95 hospitals and imaging facilities. Grouping exams into deciles by, first, patient size, and second, size-adjusted dose length product (DLP), we summarized dose and technical parameters and estimated which parameters contributed most to between-protocols dose variation. Lastly, we modeled the total population dose if all protocols with mean size-adjusted DLP above 433 or 645 mGy-cm were reduced to these thresholds. RESULTS: A total of 748,846 CTs were performed using 1033 unique protocols. When sorted by patient size, patients with larger abdominal diameters had increased dose and effective mAs (milliampere seconds), even after adjusting for patient size. When sorted by size-adjusted dose, patients in the highest versus the lowest decile in size-adjusted DLP received 6.4 times the average dose (1680 vs 265 mGy-cm) even though diameter was no different (312 vs 309 mm). Effective mAs was 2.1-fold higher, unadjusted CTDIvol 2.9-fold, and phase 2.5-fold for patients in the highest versus lowest size-adjusted DLP decile. There was virtually no change in kV (kilovolt). Automatic exposure control was widely used to modulate mAs, whereas kV modulation was rare. Phase was the strongest driver of between-protocols variation. Broad adoption of optimized protocols could result in total population dose reductions of 18.6-40%. CONCLUSION: There are large variations in radiation doses for routine abdomen CT unrelated to patient size. Modification of kV and single-phase scanning could result in substantial dose reduction. CLINICAL RELEVANCE: Radiation dose-optimization techniques for routine abdomen CT are routinely under-utilized leading to higher doses than needed. Greater modification of technical parameters and number of phases could result in substantial reduction in radiation exposure to patients. KEY POINTS: • Based on an analysis of 748,846 routine abdomen CT scans in adults, radiation doses varied tremendously across patients of the same size and optimization techniques were routinely under-utilized. • The difference in observed dose was due to variation in technical parameters and phase count. Automatic exposure control was commonly used to modify effective mAs, whereas kV was rarely adjusted for patient size. Routine abdomen CT should be performed using a single phase, yet multi-phase was common. • kV modulation by patient size and restriction to a single phase for routine abdomen indications could result in substantial reduction in radiation doses using well-established dose optimization approaches.


Assuntos
Exposição à Radiação , Tomografia Computadorizada por Raios X , Adulto , Humanos , Doses de Radiação , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Abdome
3.
Diagnostics (Basel) ; 13(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36832118

RESUMO

BACKGROUND: To assess the impact of the lung cancer screening protocol recommended by the European Society of Thoracic Imaging (ESTI) on nodule diameter, volume, and density throughout different computed tomography (CT) scanners. METHODS: An anthropomorphic chest phantom containing fourteen different-sized (range 3-12 mm) and CT-attenuated (100 HU, -630 HU and -800 HU, termed as solid, GG1 and GG2) pulmonary nodules was imaged on five CT scanners with institute-specific standard protocols (PS) and the lung cancer screening protocol recommended by ESTI (ESTI protocol, PE). Images were reconstructed with filtered back projection (FBP) and iterative reconstruction (REC). Image noise, nodule density and size (diameter/volume) were measured. Absolute percentage errors (APEs) of measurements were calculated. RESULTS: Using PE, dosage variance between different scanners tended to decrease compared to PS, and the mean differences were statistically insignificant (p = 0.48). PS and PE(REC) showed significantly less image noise than PE(FBP) (p < 0.001). The smallest size measurement errors were noted with volumetric measurements in PE(REC) and highest with diametric measurements in PE(FBP). Volume performed better than diameter measurements in solid and GG1 nodules (p < 0.001). However, in GG2 nodules, this could not be observed (p = 0.20). Regarding nodule density, REC values were more consistent throughout different scanners and protocols. CONCLUSION: Considering radiation dose, image noise, nodule size, and density measurements, we fully endorse the ESTI screening protocol including the use of REC. For size measurements, volume should be preferred over diameter.

4.
J Minim Access Surg ; 19(1): 51-56, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36722530

RESUMO

Background: In addition to the common laparoscopic lateral transperitoneal adrenalectomy (LTA), the posterior retroperitoneal adrenalectomy (PRA) is becoming increasingly important. Both techniques overlap in their indication, resulting in uncertainty about the preferred approach in some patients. We hypothesise that by determining anatomical characteristics on cross-sectional imaging computerised tomography or magnetic resonance imaging, we can show the limitations of the PRA and prevent patients from being converted to LTA. Methods: This retrospective study includes 14 patients who underwent PRA (n = 15) at a single institution between 2016 and 2018. Previously described parameters such as the retroperitoneal fat mass (RPF) were measured on pre-operative imaging. We compared data from one patient who had a conversion with those from 13 patients without conversion. Furthermore, we explored the influence of these parameters on the operative time. Results: Conversion to LTA was necessary during 1 PRA procedure. Fourteen PRAs in 13 patients were successfully completed. The mean body mass index was 30 kg/m2 and the mean operation time was 98 min. One patient who underwent a conversion had a substantially higher RPF (25 mm) compared to the patients with successfully completed PRA (median: 5.5 mm [P = 0.001]). Furthermore, the operation time strongly correlated with the RPF (P = 0.004, r = 0.713). Conclusions: Surgeons can use pre-operative imaging to assess the anatomical features to determine whether a PRA can be performed. Patients with an RPF under 14.3 mm can be safely treated with PRA. In contrast, LTA access should be considered for patients with a higher RPF (>25 mm).

5.
Eur J Radiol Open ; 9: 100431, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35765661

RESUMO

Purpose: To compare temporal evolution of imaging features of coronavirus disease 2019 (COVID-19) and influenza in computed tomography and evaluate their predictive value for distinction. Methods: In this retrospective, multicenter study 179 CT examinations of 52 COVID-19 and 44 influenza critically ill patients were included. Lung involvement, main pattern (ground glass opacity, crazy paving, consolidation) and additional lung and chest findings were evaluated by two independent observers. Additional findings and clinical data were compared patient-wise. A decision tree analysis was performed to identify imaging features with predictive value in distinguishing both entities. Results: In contrast to influenza patients, lung involvement remains high in COVID-19 patients > 14 days after the diagnosis. The predominant pattern in COVID-19 evolves from ground glass at the beginning to consolidation in later disease. In influenza there is more consolidation at the beginning and overall less ground glass opacity (p = 0.002). Decision tree analysis yielded the following: Earlier in disease course, pleural effusion is a typical feature of influenza (p = 0.007) whereas ground glass opacities indicate COVID-19 (p = 0.04). In later disease, particularly more lung involvement (p < 0.001), but also less pleural (p = 0.005) and pericardial (p = 0.003) effusion favor COVID-19 over influenza. Regardless of time point, less lung involvement (p < 0.001), tree-in-bud (p = 0.002) and pericardial effusion (p = 0.01) make influenza more likely than COVID-19. Conclusions: This study identified differences in temporal evolution of imaging features between COVID-19 and influenza. These findings may help to distinguish both diseases in critically ill patients when laboratory findings are delayed or inconclusive.

6.
J Surg Case Rep ; 2022(3): rjac079, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35368382

RESUMO

Abdominal tuberculosis (TB) can affect any organ of the gastrointestinal tract, and as a result of its unspecific symptoms, it may even mimic neoplasia. Rare manifestations are difficult to detect even for the trained eye and require clinical suspicion. We report rare cases of a mechanical ileus due to peritoneal TB in a 41-year-old man and an isolated peripancreatic infection in a 54-year-old woman. While in one patient, suspected malignancy led to diagnostic laparoscopy, it led to a total pancreatectomy with splenectomy in the other case. However, both times histology ruled out malignancy and showed unexpected similarities with TB. The patients responded well to medical treatment, although one patient is struggling with pancreatogenic diabetes.

7.
Eur Radiol ; 32(3): 1971-1982, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34642811

RESUMO

OB JECTIVES: The European Society of Radiology identified 10 common indications for computed tomography (CT) as part of the European Study on Clinical Diagnostic Reference Levels (DRLs, EUCLID), to help standardize radiation doses. The objective of this study is to generate DRLs and median doses for these indications using data from the UCSF CT International Dose Registry. METHODS: Standardized data on 3.7 million CTs in adults were collected between 2016 and 2019 from 161 institutions across seven countries (United States of America (US), Switzerland, Netherlands, Germany, UK, Israel, Japan). DRLs (75th percentile) and median doses for volumetric CT-dose index (CTDIvol) and dose-length product (DLP) were assessed for each EUCLID category (chronic sinusitis, stroke, cervical spine trauma, coronary calcium scoring, lung cancer, pulmonary embolism, coronary CT angiography, hepatocellular carcinoma (HCC), colic/abdominal pain, appendicitis), and US radiation doses were compared with European. RESULTS: The number of CT scans within EUCLID categories ranged from 8,933 (HCC) to over 1.2 million (stroke). There was greater variation in dose between categories than within categories (p < .001), and doses were significantly different between categories within anatomic areas. DRLs and median doses were assessed for all categories. DRLs were higher in the US for 9 of the 10 indications (except chronic sinusitis) than in Europe but with a significantly higher sample size in the US. CONCLUSIONS: DRLs for CTDIvol and DLP for EUCLID clinical indications from diverse organizations were established and can contribute to dose optimization. These values were usually significantly higher in the US than in Europe. KEY POINTS: • Registry data were used to create benchmarks for 10 common indications for CT identified by the European Society of Radiology. • Observed US radiation doses were higher than European for 9 of 10 indications (except chronic sinusitis). • The presented diagnostic reference levels and median doses highlight potentially unnecessary variation in radiation dose.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Adulto , Níveis de Referência de Diagnóstico , Humanos , Doses de Radiação , Valores de Referência , Sistema de Registros , Tomografia Computadorizada por Raios X
8.
Eur Radiol ; 31(4): 2106-2114, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32959080

RESUMO

The European Directive 2013/59/Euratom requires member states of the European Union to ensure justification and optimisation of radiological procedures and store information on patient exposure for analysis and quality assurance. The EuroSafe Imaging campaign of the European Society of Radiology created a working group (WG) on "Dose Management" with the aim to provide European recommendations on the implementation of dose management systems (DMS) in clinical practice. The WG follows Action 4: "Promote dose management systems to establish local, national, and European diagnostic reference levels (DRL)" of the EuroSafe Imaging Call for Action 2018. DMS are designed for medical practitioners, radiographers, medical physics experts (MPE) and other health professionals involved in imaging to support their tasks and duties of radiation protection in accordance with local and national requirements. The WG analysed requirements and critical points when installing a DMS and classified the individual functions at different performance levels. KEY POINTS: • DMS are very helpful software tools for monitoring patient exposure, optimisation, compliance with DRLs and quality assurance. • DMS can help to fulfil dosimetric aspects of the European Directive 2013/59/Euratom. • The EuroSafe WG analyses DMS requirements and gives recommendations for users.


Assuntos
Proteção Radiológica , Radiologia , Diagnóstico por Imagem , Humanos , Doses de Radiação , Radiometria
9.
JAMA Intern Med ; 180(5): 666-675, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32227142

RESUMO

Importance: Computed tomography (CT) radiation doses vary across institutions and are often higher than needed. Objective: To assess the effectiveness of 2 interventions to reduce radiation doses in patients undergoing CT. Design, Setting, and Participants: This randomized clinical trial included 864 080 adults older than 18 years who underwent CT of the abdomen, chest, combined abdomen and chest, or head at 100 facilities in 6 countries from November 1, 2015, to September 21, 2017. Data analysis was performed from October 4, 2017, to December 14, 2018. Interventions: Imaging facilities received audit feedback alone comparing radiation-dose metrics with those of other facilities followed by the multicomponent intervention, including audit feedback with targeted suggestions, a 7-week quality improvement collaborative, and best-practice sharing. Facilities were randomly allocated to the time crossing from usual care to the intervention. Main Outcomes and Measures: Primary outcomes were the proportion of high-dose CT scans and mean effective dose at the facility level. Secondary outcomes were organ doses. Outcomes after interventions were compared with those before interventions using hierarchical generalized linear models adjusting for temporal trends and patient characteristics. Results: Across 100 facilities, 864 080 adults underwent 1 156 657 CT scans. The multicomponent intervention significantly reduced proportions of high-dose CT scans, measured using effective dose. Absolute changes in proportions of high-dose scans were 1.1% to 7.9%, with percentage reductions in the proportion of high-dose scans of 4% to 30% (abdomen: odds ratio [OR], 0.82; 95% CI, 0.77-0.88; P < .001; chest: OR, 0.92; 95% CI, 0.86-0.99; P = .03; combined abdomen and chest: OR, 0.49; 95% CI, 0.41-0.59; P < .001; and head: OR, 0.71; 95% CI, 0.66-0.76; P < .001). Reductions in the proportions of high-dose scans were greater when measured using organ doses. The absolute reduction in the proportion of high-dose scans was 6.0% to 17.2%, reflecting 23% to 58% reductions in the proportions of high-dose scans across anatomical areas. Mean effective doses were significantly reduced after multicomponent intervention for abdomen (6% reduction, P < .001), chest (4%, P < .001), and chest and abdomen (14%, P < .001) CT scans. Larger reductions in mean organ doses were 8% to 43% across anatomical areas. Audit feedback alone reduced the proportions of high-dose scans and mean dose, but reductions in observed dose were smaller. Radiologist's satisfaction with CT image quality was unchanged and high during all periods. Conclusions and Relevance: For imaging facilities, detailed feedback on CT radiation dose combined with actionable suggestions and quality improvement education significantly reduced doses, particularly organ doses. Effects of audit feedback alone were modest. Trial Registration: ClinicalTrials.gov Identifier: NCT03000751.


Assuntos
Abdome/diagnóstico por imagem , Doses de Radiação , Tórax/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Cabeça , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
10.
Eur Radiol ; 30(3): 1690-1700, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31748858

RESUMO

OBJECTIVES: To update the national diagnostic reference levels (DRLs) for adult CT in Switzerland using dose management software and to compare them to the previous Swiss DRLs from 2010. METHODS: CT dose data from 14 radiological institutes with a total of 50 CT scanners were collected with locally installed dose management software between 2014 and 2017. Data were assigned to 15 defined master protocols. Data cleaning steps were developed and adjusted individually for each participating institute and protocol. The DRLs for each master protocol were calculated as the 75th percentile of the distribution of the median volume computed tomography dose index (CTDIvol) and dose-length product (DLP) values per CT scanner. RESULTS: In total, 220,269 CT exams were available after data cleaning. Updated DRLs showed a clear trend towards lower doses compared with previous DRLs. The average relative change in the DRLs for CTDIvol was - 30% (0 to - 47%) and - 22% for DLP (+ 20 to - 40%). The largest relative decrease in the DRL for DLP was observed for the cervical spine protocol (- 40%), the two chest protocols (chest, - 37%; and exclusion of pulmonary embolism, - 33%), and the two neck protocols (neck, - 32%; and carotid angiography, - 28%). The DRLs for other protocols, for example the head and the abdomen-pelvis protocol, showed smaller relative changes (- 11% and - 17%). CONCLUSIONS: The updated national DRLs are substantially lower than the previous values from 2010, demonstrating technological progress and the efforts of the radiological community to lower CT radiation exposure. KEY POINTS: • Dose management software allows the establishment of DRLs based on big data. • Updated Swiss DRLs for adult CT are substantially lower compared with those from 2010. • Swiss DRLs are low compared with other national DRLs.


Assuntos
Algoritmos , Tomografia Computadorizada por Raios X/estatística & dados numéricos , Adulto , Humanos , Doses de Radiação , Exposição à Radiação , Valores de Referência , Software , Suíça
11.
BMJ ; 364: k4931, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30602590

RESUMO

OBJECTIVE: To determine patient, institution, and machine characteristics that contribute to variation in radiation doses used for computed tomography (CT). DESIGN: Prospective cohort study. SETTING: Data were assembled and analyzed from the University of California San Francisco CT International Dose Registry. PARTICIPANTS: Standardized data from over 2.0 million CT examinations of adults who underwent CT between November 2015 and August 2017 from 151 institutions, across seven countries (Switzerland, Netherlands, Germany, United Kingdom, United States, Israel, and Japan). MAIN OUTCOME MEASURES: Mean effective doses and proportions of high dose examinations for abdomen, chest, combined chest and abdomen, and head CT were determined by patient characteristics (sex, age, and size), type of institution (trauma center, care provision 24 hours per day and seven days per week, academic, private), institutional practice volume, machine factors (manufacturer, model), country, and how scanners were used, before and after adjustment for patient characteristics, using hierarchical linear and logistic regression. High dose examinations were defined as CT scans with doses above the 75th percentile defined during a baseline period. RESULTS: The mean effective dose and proportion of high dose examinations varied substantially across institutions. The doses varied modestly (10-30%) by type of institution and machine characteristics after adjusting for patient characteristics. By contrast, even after adjusting for patient characteristics, wide variations in radiation doses across countries persisted, with a fourfold range in mean effective dose for abdomen CT examinations (7.0-25.7 mSv) and a 17-fold range in proportion of high dose examinations (4-69%). Similar variation across countries was observed for chest (mean effective dose 1.7-6.4 mSv, proportion of high dose examinations 1-26%) and combined chest and abdomen CT (10.0-37.9 mSv, 2-78%). Doses for head CT varied less (1.4-1.9 mSv, 8-27%). In multivariable models, the dose variation across countries was primarily attributable to institutional decisions regarding technical parameters (that is, how the scanners were used). CONCLUSIONS: CT protocols and radiation doses vary greatly across countries and are primarily attributable to local choices regarding technical parameters, rather than patient, institution, or machine characteristics. These findings suggest that the optimization of doses to a consistent standard should be possible. STUDY REGISTRATION: Clinicaltrials.gov NCT03000751.


Assuntos
Doses de Radiação , Tomografia Computadorizada por Raios X/normas , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Relação Dose-Resposta à Radiação , Feminino , Saúde Global , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Sistema de Registros , Tomografia Computadorizada por Raios X/efeitos adversos , Tomografia Computadorizada por Raios X/estatística & dados numéricos , Adulto Jovem
12.
Eur Radiol ; 28(8): 3405-3412, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29460070

RESUMO

OBJECTIVES: To compare image quality and radiation dose of abdominal split-filter dual-energy CT (SF-DECT) combined with monoenergetic imaging to single-energy CT (SECT) with automatic tube voltage selection (ATVS). METHODS: Two-hundred single-source abdominal CT scans were performed as SECT with ATVS (n = 100) and SF-DECT (n = 100). SF-DECT scans were reconstructed and subdivided into composed images (SF-CI) and monoenergetic images at 55 keV (SF-MI). Objective and subjective image quality were compared among single-energy images (SEI), SF-CI and SF-MI. CNR and FOM were separately calculated for the liver (e.g. CNRliv) and the portal vein (CNRpv). Radiation dose was compared using size-specific dose estimate (SSDE). Results of the three groups were compared using non-parametric tests. RESULTS: Image noise of SF-CI was 18% lower compared to SEI and 48% lower compared to SF-MI (p < 0.001). Composed images yielded higher CNRliv over single-energy images (23.4 vs. 20.9; p < 0.001), whereas CNRpv was significantly lower (3.5 vs. 5.2; p < 0.001). Monoenergetic images overcame this inferiority in CNRpv and achieved similar results compared to single-energy images (5.1 vs. 5.2; p > 0.628). Subjective sharpness was equal between single-energy and monoenergetic images and diagnostic confidence was equal between single-energy and composed images. FOMliv was highest for SF-CI. FOMpv was equal for SEI and SF-MI (p = 0.78). SSDE was significant lower for SF-DECT compared to SECT (p < 0.022). CONCLUSIONS: The combined use of split-filter dual-energy CT images provides comparable objective and subjective image quality at lower radiation dose compared to single-energy CT with ATVS. KEY POINTS: • Split-filter dual-energy results in 18% lower noise compared to single-energy with ATVS. • Split-filter dual-energy results in 11% lower SSDE compared to single-energy with ATVS. • Spectral shaping of split-filter dual-energy leads to an increased dose-efficiency.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Doses de Radiação , Radiografia Abdominal/métodos , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos , Estudos Retrospectivos , Razão Sinal-Ruído , Adulto Jovem
13.
AJR Am J Roentgenol ; 209(6): 1302-1307, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28898129

RESUMO

OBJECTIVE: The purpose of this study is to compare diagnostic reference levels from a local European CT dose registry, using radiation-tracking software from a large patient sample, with preexisting European and North American diagnostic reference levels. MATERIALS AND METHODS: Data (n = 43,761 CT scans obtained over the course of 2 years) for the European local CT dose registry were obtained from eight CT scanners at six institutions. Means, medians, and interquartile ranges of volumetric CT dose index (CTDIvol), dose-length product (DLP), size-specific dose estimate, and effective dose values for CT examinations of the head, paranasal sinuses, thorax, pulmonary angiogram, abdomen-pelvis, renal-colic, thorax-abdomen-pelvis, and thoracoabdominal angiogram were obtained using radiation-tracking software. Metrics from this registry were compared with diagnostic reference levels from Canada and California (published in 2015), the American College of Radiology (ACR) dose index registry (2015), and national diagnostic reference levels from local CT dose registries in Switzerland (2010), the United Kingdom (2011), and Portugal (2015). RESULTS: Our local registry had a lower 75th percentile CTDIvol for all protocols than did the individual internationally sourced data. Compared with our study, the ACR dose index registry had higher 75th percentile CTDIvol values by 55% for head, 240% for thorax, 28% for abdomen-pelvis, 42% for thorax-abdomen-pelvis, 128% for pulmonary angiogram, 138% for renal-colic, and 58% for paranasal sinus studies. CONCLUSION: Our local registry had lower diagnostic reference level values than did existing European and North American diagnostic reference levels. Automated radiation-tracking software could be used to establish and update existing diagnostic reference levels because they are capable of analyzing large datasets meaningfully.


Assuntos
Radiometria/instrumentação , Software , Tomografia Computadorizada por Raios X , Europa (Continente) , Humanos , América do Norte , Doses de Radiação , Valores de Referência , Sistema de Registros
14.
Abdom Radiol (NY) ; 42(12): 2898-2908, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28951947

RESUMO

Cholangiocarcinoma (CCA) is the most common malignancy in primary sclerosing cholangitis (PSC). Approximately half of CCA are diagnosed within two years of initial diagnosis and often have a poor prognosis because of advanced tumor stage at the time of diagnosis. Thus, rigorous initial imaging evaluation for detecting CCA is important. CCA in PSC usually manifests as intrahepatic mass-forming or perihilar periductal-infiltrating type. Imaging diagnosis is often challenging due to pre-existing biliary strictures and heterogeneous liver. Multimodality imaging approach and careful comparison with prior images are often helpful in detecting small CCA. Ultrasound is widely used as an initial test, but has a limited ability to detect small tumors in the heterogeneous liver with PSC. MRI combined with MRCP is excellent to demonstrate focal biliary abnormalities as well as subtle liver masses. Contrast-enhanced ultrasound is useful to demonstrate CCA by demonstrating rapid and marked washout. In addition, there are other disease entities that mimic CCA including hepatocellular carcinoma, confluent hepatic fibrosis, IgG4-related sclerosing cholangitis, inflammatory mass, and focal fat deposition. In this pictorial essay, imaging findings of CCA in PSC is described and discuss the challenges in imaging surveillance for CCA in the patients with PSC. Imaging findings of the mimickers of CCA in PSC and their differentiating features are also discussed.


Assuntos
Neoplasias dos Ductos Biliares/diagnóstico por imagem , Colangiocarcinoma/diagnóstico por imagem , Colangite Esclerosante/diagnóstico por imagem , Diagnóstico por Imagem , Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/patologia , Colangite Esclerosante/patologia , Humanos
15.
Abdom Radiol (NY) ; 42(10): 2562-2570, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28470402

RESUMO

PURPOSE: To assess the accuracy of iodine quantification in a phantom study at different radiation dose levels with dual-energy dual-source CT and to evaluate image quality and radiation doses in patients undergoing a single-energy and two dual-energy abdominal CT protocols. METHODS: In a phantom study, the accuracy of iodine quantification (4.5-23.5 mgI/mL) was evaluated using the manufacturer-recommended and three dose-optimized dual-energy protocols. In a patient study, 75 abdomino-pelvic CT examinations were acquired as follows: 25 CT scans with the manufacturer-recommended dual-energy protocol (protocol A); 25 CT scans with a dose-optimized dual-energy protocol (protocol B); and 25 CT scans with a single-energy CT protocol (protocol C). CTDIvol and objective noise were measured. Five readers scored each scan according to six subjective image quality parameters (noise, contrast, artifacts, visibility of small structures, sharpness, overall diagnostic confidence). RESULTS: In the phantom study, differences between the real and measured iodine concentrations ranged from -8.8% to 17.0% for the manufacturer-recommended protocol and from -1.6% to 20.5% for three dose-optimized protocols. In the patient study, the CTDIvol of protocol A, B, and C were 12.5 ± 1.9, 7.5 ± 1.2, and 6.5 ± 1.7 mGycm, respectively (p < 0.001), and the average image noise values were 6.6 ± 1.2, 7.8 ± 1.4, and 9.6 ± 2.2 HU, respectively (p < 0.001). No significant differences in the six subjective image quality parameters were observed between the dose-optimized dual-energy and the single-energy protocol. CONCLUSION: A dose reduction of 41% is feasible for the manufacturer-recommended, abdominal dual-energy CT protocol, as it maintained the accuracy of iodine measurements and subjective image quality compared to a single-energy protocol.


Assuntos
Meios de Contraste/farmacocinética , Iohexol/análogos & derivados , Doses de Radiação , Radiografia Abdominal/métodos , Tomografia Computadorizada por Raios X/métodos , Idoso , Feminino , Humanos , Iohexol/farmacocinética , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Reprodutibilidade dos Testes , Estudos Retrospectivos
16.
Emerg Radiol ; 24(1): 31-37, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27614884

RESUMO

The objective of this study was the assessment of the image quality and radiation dose in polytrauma CT using immobilization devices. An anthropomorphic whole body and a liver phantom were scanned on a 128-slice CT scanner with four different protocols using automatic tube current modulation (120 kVp, 150 ref. mAs; 120 kV, 200 ref. mAs; 140 kVp, 150 ref. mAs; and 140 kVp, 200 ref. mAs) and four different setups (no immobilization device (setup A), vacuum mattress 1 (setup B), vacuum mattress 2 (setup C), and spineboard (setup D)). Qualitative and quantitative image quality parameters and radiation dose were assessed. Image noise increased on average by 6.6, 11.2, and 9.4 %, and CNR decreased by 11.2, 13.9, and 6.5 for setups B, C, and D, respectively, compared with setup A. The CTDIvol increased up to 6 % using immobilization devices. Severe streak artifacts, provoked by the inflation valve of the mattresses were detected at the level of the head and shoulder. Applying immobilization devices for whole-body CT with automatic tube current modulation increases the radiation dose and decreases the quantitative image quality slightly. Severe artifacts, induced by the inflation valve of the mattress, can influence the diagnostic accuracy at the level of the head and shoulder.


Assuntos
Imobilização/instrumentação , Traumatismo Múltiplo/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Artefatos , Roupas de Cama, Mesa e Banho , Humanos , Imagens de Fantasmas , Doses de Radiação , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Imagem Corporal Total
17.
Radiology ; 280(3): 663-73, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27533027

RESUMO

Rising concerns of radiation exposure from computed tomography have caused various advances in dose reduction technologies. While proper justification and optimization of scans has been the main focus to address increasing doses, the value of dose management has been largely overlooked. The purpose of this article is to explain the importance of dose management, provide an overview of the available options for dose tracking, and discuss the importance of a dedicated dose team. The authors also describe how a digital radiation tracking software can be used for analyzing the big data on doses for auditing patient safety, scanner utilization, and productivity, all of which have enormous personal and institutional implications. (©) RSNA, 2016.


Assuntos
Segurança do Paciente , Doses de Radiação , Proteção Radiológica/métodos , Tomografia Computadorizada por Raios X , Humanos , Modelos Organizacionais , Melhoria de Qualidade , Radiometria
18.
Invest Radiol ; 51(8): 491-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26895193

RESUMO

OBJECTIVE: The aim of this study was to investigate the image quality, radiation dose, and accuracy of virtual noncontrast images and iodine quantification of split-filter dual-energy computed tomography (CT) using a single x-ray source in a phantom and patient study. MATERIALS AND METHODS: In a phantom study, objective image quality and accuracy of iodine quantification were evaluated for the split-filter dual-energy mode using a tin and gold filter. In a patient study, objective image quality and radiation dose were compared in thoracoabdominal CT of 50 patients between the standard single-energy and split-filter dual-energy mode. The radiation dose was estimated by size-specific dose estimate. To evaluate the accuracy of virtual noncontrast imaging, attenuation measurements in the liver, spleen, and muscle were compared between a true noncontrast premonitoring scan and the virtual noncontrast images of the dual-energy scans. Descriptive statistics and the Mann-Whitney U test were used. RESULTS: In the phantom study, differences between the real and measured iodine concentration ranged from 2.2% to 21.4%. In the patient study, the single-energy and dual-energy protocols resulted in similar image noise (7.4 vs 7.1 HU, respectively; P = 0.43) and parenchymal contrast-to-noise ratio (CNR) values for the liver (29.2 vs 28.5, respectively; P = 0.88). However, the vascular CNR value for the single-energy protocol was significantly higher than for the dual-energy protocol (10.0 vs 7.1, respectively; P = 0.006). The difference in the measured attenuation between the true and the virtual noncontrast images ranged from 3.1 to 6.7 HU. The size-specific dose estimate of the dual-energy protocol was, on average, 17% lower than that of the single-energy protocol (11.7 vs 9.7 mGy, respectively; P = 0.008). CONCLUSIONS: Split-filter dual-energy compared with single-energy CT results in similar objective image noise in addition to dual-energy capabilities at 17% lower radiation dose. Because of beam hardening, split-filter dual-energy can lead to decreased CNR values of iodinated structures.


Assuntos
Doses de Radiação , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/métodos , Idoso , Feminino , Humanos , Técnicas In Vitro , Iodo , Fígado/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/diagnóstico por imagem , Imagens de Fantasmas , Radiografia Abdominal/métodos , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/instrumentação , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos , Radiografia Torácica/métodos , Reprodutibilidade dos Testes , Baço/diagnóstico por imagem
19.
Eur Radiol ; 25(3): 687-93, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25316058

RESUMO

OBJECTIVES: To compare image quality and low-contrast detectability of an integrated circuit (IC) detector in abdominal CT of obese patients with conventional detector technology at low tube voltages. METHODS: A liver phantom with 45 lesions was placed in a water container to mimic an obese patient and examined on two different CT systems at 80, 100 and 120 kVp. The systems were equipped with either the IC or conventional detector. Image noise was measured, and the contrast-to-noise-ratio (CNR) was calculated. Low-contrast detectability was assessed independently by three radiologists. Radiation dose was estimated by the volume CT dose index (CTDIvol). RESULTS: The image noise was significantly lower, and the CNR was significantly higher with the IC detector at 80, 100 and 120 kVp, respectively (P = 0.023). The IC detector resulted in an increased lesion detection rate at 80 kVp (38.1 % vs. 17.2 %) and 100 kVp (57.0 % vs. 41.0 %). There was no difference in the detection rate between the IC detector at 100 kVp and the conventional detector at 120 kVp (57.0 % vs. 62.2 %). The CTDIvol at 80, 100 and 120 kVp measured 4.5-5.2, 7.3-7.9 and 9.8-10.2 mGy, respectively. CONCLUSIONS: The IC detector at 100 kVp resulted in similar low-contrast detectability compared to the conventional detector with a 120-kVp protocol at a radiation dose reduction of 37 %.


Assuntos
Neoplasias Hepáticas/diagnóstico por imagem , Obesidade/diagnóstico por imagem , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos , Idoso , Tomografia Computadorizada de Feixe Cônico/métodos , Eletricidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Anatômicos , Doses de Radiação , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Razão Sinal-Ruído
20.
AJR Am J Roentgenol ; 203(2): 315-22, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25055265

RESUMO

OBJECTIVE: Splenic lesions are commonly encountered and are often incidental in nature. Benign splenic vascular neoplasms include hemangioma, hamartoma, lymphangioma, extra-medullary hematopoiesis (EMH), and sclerosing angiomatoid nodular transformation (SANT). Uncommonly encountered entities of the spleen include focal EMH, focal myeloma, angiomyolipoma, and SANT. Primary splenic angiosarcoma is the most common malignant nonhematolymphoid malignancy of the spleen. Lymphoma, myeloma, and metastases are the other malignant entities involving the spleen. The clinical presentation, key imaging findings, and associations of benign, neoplastic, and malignant diseases that can involve the spleen will be discussed. CONCLUSION: Radiologists can use multimodality imaging to diagnose entities involving the spleen by recognizing key imaging features and considering patient characteristics. However, biopsy may be warranted for definitive diagnosis when imaging findings are nonspecific.


Assuntos
Diagnóstico por Imagem , Doenças Raras/diagnóstico , Esplenopatias/diagnóstico , Biópsia , Meios de Contraste , Diagnóstico Diferencial , Humanos , Neoplasias Esplênicas/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA