Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 6792, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37100889

RESUMO

Acute Lung Injury/Acute Respiratory Distress Syndrome (ALI/ARDS) is characterized by diffuse alveolar damage and significant edema accumulation, which is associated with impaired alveolar fluid clearance (AFC) and alveolar-capillary barrier disruption, leading to acute respiratory failure. Our previous data showed that electroporation-mediated gene delivery of the Na+, K+-ATPase ß1 subunit not only increased AFC, but also restored alveolar barrier function through upregulation of tight junction proteins, leading to treatment of LPS-induced ALI in mice. More importantly, our recent publication showed that gene delivery of MRCKα, the downstream effector of ß1 subunit-mediated signaling towards upregulation of adhesive junctions and epithelial and endothelial barrier integrity, also provided therapeutic potential for ARDS treatment in vivo but without necessarily accelerating AFC, indicating that for ARDS treatment, improving alveolar capillary barrier function may be of more benefit than improving fluid clearance. In the present study, we investigated the therapeutical potential of ß2 and ß3 subunits, the other two ß isoforms of Na+, K+-ATPase, for LPS-induced ALI. We found that gene transfer of either the ß1, ß2, or ß3 subunits significantly increased AFC compared to the basal level in naïve animals and each gave similar increased AFC to each other. However, unlike that of the ß1 subunit, gene transfer of the ß2 or ß3 subunit into pre-injured animal lungs failed to show the beneficial effects of attenuated histological damage, neutrophil infiltration, overall lung edema, or increased lung permeability, indicating that ß2 or ß3 gene delivery could not treat LPS induced lung injury. Further, while ß1 gene transfer increased levels of key tight junction proteins in the lungs of injured mice, that of either the ß2 or ß3 subunit had no effect on levels of tight junction proteins. Taken together, this strongly suggests that restoration of alveolar-capillary barrier function alone may be of equal or even more benefit than improving AFC for ALI/ARDS treatment.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Camundongos , Animais , Regulação para Cima , Lipopolissacarídeos/farmacologia , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Pulmão/patologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/terapia , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/genética , Síndrome do Desconforto Respiratório/terapia , Terapia Genética , Proteínas de Junções Íntimas/metabolismo , Alvéolos Pulmonares/metabolismo
2.
J Med Genet ; 57(5): 296-300, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31662342

RESUMO

BACKGROUND: Alveolar capillary dysplasia with misalignment of the pulmonary veins (ACDMPV) is a lethal disorder of lung development. ACDMPV is associated with haploinsufficiency of the transcription factor FOXF1, which plays an important role in the development of the lung and intestine. CNVs upstream of the FOXF1 gene have also been associated with an ACDMPV phenotype, but mechanism(s) by which these deletions disrupt lung development are not well understood. The objective of our study is to gain insights into the mechanisms by which CNVs contribute to an ACDMPV phenotype. METHODS: We analysed primary lung tissue from an infant with classic clinical and histological findings of ACDMPV and harboured a 340 kb deletion on chromosome 16q24.1 located 250 kb upstream of FOXF1. RESULTS: In RNA generated from paraffin-fixed lung sections, our patient had lower expression of FOXF1 than age-matched controls. He also had an abnormal pattern of FOXF1 protein expression, with a dramatic loss of FOXF1 expression in the lung. To gain insights into the mechanisms underlying these changes, we assessed the epigenetic landscape using chromatin immunoprecipitation, which demonstrated loss of histone H3 lysine 27 acetylation (H3K27Ac), an epigenetic mark of active enhancers, in the region of the deletion. CONCLUSIONS: Together, these data suggest that the deletion disrupts an enhancer responsible for directing FOXF1 expression in the developing lung and provide novel insights into the mechanisms underlying a fatal developmental lung disorder.


Assuntos
Fatores de Transcrição Forkhead/genética , Predisposição Genética para Doença , Pulmão/metabolismo , Síndrome da Persistência do Padrão de Circulação Fetal/genética , Cromossomos Humanos Par 16/genética , Elementos Facilitadores Genéticos/genética , Deleção de Genes , Regulação da Expressão Gênica/genética , Haploinsuficiência/genética , Humanos , Lactente , Recém-Nascido , Pulmão/crescimento & desenvolvimento , Pulmão/patologia , Síndrome da Persistência do Padrão de Circulação Fetal/patologia
3.
Virology ; 436(1): 235-43, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23260110

RESUMO

Interleukin 2-inducible T cell kinase (ITK) influences T cell signaling by coordinating actin polymerization and polarization as well as recruitment of kinases and adapter proteins. ITK regulates multiple steps of HIV-1 replication, including virion assembly and release. Fluorescent microscopy was used to examine the functional interactions between ITK and HIV-1 Gag during viral particle release. ITK and Gag colocalized at the plasma membrane and were concentrated at sites of F-actin accumulation and membrane lipid rafts in HIV-1 infected T cells. There was polarized staining of ITK, Gag, and actin towards sites of T cell conjugates. Small molecule inhibitors of ITK disrupted F-actin capping, perturbed Gag-ITK colocalization, inhibited virus like particle release, and reduced HIV replication in primary human CD4+ T cells. These data provide insight as to how ITK influences HIV-1 replication and suggest that targeting host factors that regulate HIV-1 egress provides an innovative strategy for controlling HIV infection.


Assuntos
Actinas/metabolismo , HIV-1/fisiologia , Proteínas Tirosina Quinases/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Linfócitos T CD4-Positivos/virologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/virologia , Infecções por HIV/virologia , HIV-1/genética , HIV-1/metabolismo , Humanos , Interleucina-2/metabolismo , Células Jurkat , Microdomínios da Membrana , Proteínas Tirosina Quinases/antagonistas & inibidores , Transdução de Sinais , Montagem de Vírus , Liberação de Vírus , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA