Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 7(7): e41680, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848564

RESUMO

Pyridoxal 5'-phosphate (PLP) is a cofactor for dozens of B(6) requiring enzymes. PLP reacts with apo-B(6) enzymes by forming an aldimine linkage with the ε-amino group of an active site lysine residue, thus yielding the catalytically active holo-B(6) enzyme. During protein turnover, the PLP is salvaged by first converting it to pyridoxal by a phosphatase and then back to PLP by pyridoxal kinase. Nonetheless, PLP poses a potential toxicity problem for the cell since its reactive 4'-aldehyde moiety forms covalent adducts with other compounds and non-B(6) proteins containing thiol or amino groups. The regulation of PLP homeostasis in the cell is thus an important, yet unresolved issue. In this report, using site-directed mutagenesis, kinetic, spectroscopic and chromatographic studies we show that pyridoxal kinase from E. coli forms a complex with the product PLP to form an inactive enzyme complex. Evidence is presented that, in the inhibited complex, PLP has formed an aldimine bond with an active site lysine residue during catalytic turnover. The rate of dissociation of PLP from the complex is very slow, being only partially released after a 2-hour incubation with PLP phosphatase. Interestingly, the inactive pyridoxal kinase•PLP complex can be partially reactivated by transferring the tightly bound PLP to an apo-B(6) enzyme. These results open new perspectives on the mechanism of regulation and role of pyridoxal kinase in the Escherichia coli cell.


Assuntos
Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Escherichia coli/enzimologia , Piridoxal Quinase/antagonistas & inibidores , Piridoxal Quinase/metabolismo , Fosfato de Piridoxal/metabolismo , Fosfato de Piridoxal/farmacologia , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Biocatálise , Domínio Catalítico , Ativação Enzimática , Humanos , Cinética , Ligantes , Modelos Moleculares , Ligação Proteica , Piridoxal Quinase/química
2.
Protein Sci ; 16(10): 2184-94, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17766369

RESUMO

Pyridoxal kinase catalyzes the transfer of a phosphate group from ATP to the 5' alcohol of pyridoxine, pyridoxamine, and pyridoxal. In this work, kinetic studies were conducted to examine monovalent cation dependence of human pyridoxal kinase kinetic parameters. The results show that hPLK affinity for ATP and PL is increased manyfold in the presence of K(+) when compared to Na(+); however, the maximal activity of the Na(+) form of the enzyme is more than double the activity in the presence of K(+). Other monovalent cations, Li(+), Cs(+), and Rb(+) do not show significant activity. We have determined the crystal structure of hPLK in the unliganded form, and in complex with MgATP to 2.0 and 2.2 A resolution, respectively. Overall, the two structures show similar open conformation, and likely represent the catalytically idle state. The crystal structure of the MgATP complex also reveals Mg(2+) and Na(+) acting in tandem to anchor the ATP at the active site. Interestingly, the active site of hPLK acts as a sink to bind several molecules of MPD. The features of monovalent and divalent metal cation binding, active site structure, and vitamin B6 specificity are discussed in terms of the kinetic and structural studies, and are compared with those of the sheep and Escherichia coli enzymes.


Assuntos
Magnésio/química , Modelos Moleculares , Potássio/química , Piridoxal Quinase/química , Sódio/química , Trifosfato de Adenosina/química , Animais , Sítios de Ligação , Cátions Bivalentes/química , Cátions Monovalentes/química , Cristalografia por Raios X , Ativação Enzimática , Proteínas de Escherichia coli/química , Humanos , Cinética , Piridoxal Quinase/metabolismo , Ovinos
3.
J Bacteriol ; 188(12): 4542-52, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16740960

RESUMO

The pdxK and pdxY genes have been found to code for pyridoxal kinases, enzymes involved in the pyridoxal phosphate salvage pathway. Two pyridoxal kinase structures have recently been published, including Escherichia coli pyridoxal kinase 2 (ePL kinase 2) and sheep pyridoxal kinase, products of the pdxY and pdxK genes, respectively. We now report the crystal structure of E. coli pyridoxal kinase 1 (ePL kinase 1), encoded by a pdxK gene, and an isoform of ePL kinase 2. The structures were determined in the unliganded and binary complexes with either MgATP or pyridoxal to 2.1-, 2.6-, and 3.2-A resolutions, respectively. The active site of ePL kinase 1 does not show significant conformational change upon binding of either pyridoxal or MgATP. Like sheep PL kinase, ePL kinase 1 exhibits a sequential random mechanism. Unlike sheep pyridoxal kinase, ePL kinase 1 may not tolerate wide variation in the size and chemical nature of the 4' substituent on the substrate. This is the result of differences in a key residue at position 59 on a loop (loop II) that partially forms the active site. Residue 59, which is His in ePL kinase 1, interacts with the formyl group at C-4' of pyridoxal and may also determine if residues from another loop (loop I) can fill the active site in the absence of the substrate. Both loop I and loop II are suggested to play significant roles in the functions of PL kinases.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Piridoxal Quinase/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Escherichia coli/metabolismo , Proteínas de Escherichia coli/classificação , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Isoenzimas/química , Modelos Moleculares , Piridoxal/metabolismo , Piridoxal Quinase/classificação , Piridoxal Quinase/genética , Piridoxal Quinase/metabolismo , Especificidade por Substrato
4.
J Bacteriol ; 186(23): 8074-82, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15547280

RESUMO

The crystal structure of Escherichia coli PdxY, the protein product of the pdxY gene, has been determined to a 2.2-A resolution. PdxY is a member of the ribokinase superfamily of enzymes and has sequence homology with pyridoxal kinases that phosphorylate pyridoxal at the C-5' hydroxyl. The protein is a homodimer with an active site on each monomer composed of residues that come exclusively from each respective subunit. The active site is filled with a density that fits that of pyridoxal. In monomer A, the ligand appears to be covalently attached to Cys122 as a thiohemiacetal, while in monomer B it is not covalently attached but appears to be partially present as pyridoxal 5'-phosphate. The presence of pyridoxal phosphate and pyridoxal as ligands was confirmed by the activation of aposerine hydroxymethyltransferase after release of the ligand by the denaturation of PdxY. The ligand, which appears to be covalently attached to Cys122, does not dissociate after denaturation of the protein. A detailed comparison (of functional properties, sequence homology, active site and ATP-binding-site residues, and active site flap types) of PdxY with other pyridoxal kinases as well as the ribokinase superfamily in general suggested that PdxY is a member of a new subclass of the ribokinase superfamily. The structure of PdxY also permitted an interpretation of work that was previously published about this enzyme.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Piridoxal Quinase/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalização , Dados de Sequência Molecular , Fosfotransferases (Aceptor do Grupo Álcool)/classificação , Piridoxal/metabolismo , Piridoxal Quinase/fisiologia
5.
Protein Expr Purif ; 36(2): 300-6, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15249053

RESUMO

Pyridoxal kinase is an ATP dependent enzyme that phosphorylates pyridoxal, pyridoxine, and pyridoxamine forming their respective 5'-phosphorylated esters. The kinase is a part of the salvage pathway for re-utilizing pyridoxal 5'-phosphate, which serves as a coenzyme for dozens of enzymes involved in amino acid and sugar metabolism. Clones of two pyridoxal kinases from Escherichia coli and one from human were inserted into a pET 22b plasmid and expressed in E. coli. All three enzymes were purified to near homogeneity and kinetic constants were determined for the three vitamin substrates. Previous studies had suggested that ZnATP was the preferred trinucleotide substrate, but our studies show that under physiological conditions MgATP is the preferred substrate. One of the two E. coli kinases has very low activity for pyridoxal, pyridoxine, and pyridoxamine. We conclude that in vivo this kinase may have an alternate substrate involved in another metabolic pathway and that pyridoxal has only a poor secondary activity for this kinase.


Assuntos
Trifosfato de Adenosina/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/isolamento & purificação , Escherichia coli/enzimologia , Piridoxal Quinase/química , Piridoxal Quinase/isolamento & purificação , Trifosfato de Adenosina/metabolismo , Aminoácidos/metabolismo , Metabolismo dos Carboidratos , Coenzimas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Humanos , Metabolismo/fisiologia , Plasmídeos , Piridoxal Quinase/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato/fisiologia , Vitamina B 6/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA