Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ArXiv ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37292485

RESUMO

A novel method for fast and high-resolution metabolic imaging, called ECcentric Circle ENcoding TRajectorIes for Compressed sensing (ECCENTRIC), has been developed and implemented at 7 Tesla MRI. ECCENTRIC is a non-Cartesian spatial-spectral encoding method optimized to accelerate magnetic resonance spectroscopic imaging (MRSI) with high signal-to-noise at ultra-high field. The approach provides flexible and random (k,t) sampling without temporal interleaving to improve spatial response function and spectral quality. ECCENTRIC needs low gradient amplitudes and slew-rates that reduces electrical, mechanical and thermal stress of the scanner hardware, and is robust to timing imperfection and eddy-current delays. Combined with a model-based low-rank reconstruction, this approach enables simultaneous imaging of up to 14 metabolites over the whole-brain at 2-3mm isotropic resolution in 4-10 minutes. In healthy volunteers ECCENTRIC demonstrated unprecedented spatial mapping of fine structural details of human brain neurochemistry. This innovative tool introduces a novel approach to neuroscience, providing new insights into the exploration of brain activity and physiology.

2.
Obes Sci Pract ; 7(2): 217-225, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33841891

RESUMO

BACKGROUND: Weight loss is recommended as the primary treatment for nonalcoholic fatty liver disease (NAFLD). However, the magnitude and velocity of hepatic steatosis resolution with weight loss is unclear, making it difficult to counsel patients seeking weight loss for treatment of NAFLD. The aim of this study was to determine the rate of hepatic steatosis improvement and stool microbiome changes associated with rapid diet-induced weight loss in NAFLD. METHODS: Fourteen NAFLD patients (mean ± standard deviation, body mass index [BMI] 36.4 ± 4 kg/m2) enrolled in a 12-week meal replacement program underwent frequent measurement of Fibroscan-controlled attenuation parameter (CAP). Magnetic resonance imaging (MRI-Dixon method) for hepatic fat quantitation and stool microbiome analysis (16S rRNA gene sequencing) were completed in 11 subjects at baseline and Week 12. RESULTS: At Week 12, mean (95% confidence interval) weight loss was -13.4 (-15.2, -11.5)% and CAP score -26.6 (-35.6, -17.6)% (both Ps < 0.001). CAP scores changed at a rate of -4.9 dB/m/kg (-30.1 dB/m per unit BMI) in Weeks 1-4 and -0.6 dB/m/kg (-2.4 dB/m per unit BMI) in Weeks 8-12. MRI-determined hepatic fat fraction decreased by -74.1% (p < 0.001) at a rate of -0.51%/kg (-3.19% per unit BMI), with complete steatosis resolution in 90% patients. BMI change was associated with decreased stool microbial diversity (coefficient = 0.17; Shannon Index), increased abundance of Prevotella_9 (Bacteroidetes; coefficient = 0.96) and decreased abundance of Phascolarctobacterium (Firmicutes; coefficient = -0.42) (both Ps < 0.05). CONCLUSIONS: Diet-induced intensive weight loss is associated with rapid improvement and complete resolution of hepatic steatosis and decreased stool microbial diversity. These findings highlight the dynamic nature of hepatic fat and may help clinicians to develop evidence-based treatment goals for patients with NAFLD and obesity who undertake weight loss interventions. Further research is warranted to understand the effects of intensive weight loss and gut microbiome changes on long-term NAFLD resolution.

3.
Magn Reson Med ; 79(5): 2470-2480, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28905419

RESUMO

PURPOSE: To use a fast 3D rosette spectroscopic imaging acquisition to quantitatively evaluate how spectral quality influences detection of the endogenous variation of gray and white matter metabolite differences in controls, and demonstrate how rosette spectroscopic imaging can detect metabolic dysfunction in patients with neocortical abnormalities. METHODS: Data were acquired on a 3T MR scanner and 32-channel head coil, with rosette spectroscopic imaging covering a 4-cm slab of fronto-parietal-temporal lobes. The influence of acquisition parameters and filtering on spectral quality and sensitivity to tissue composition was assessed by LCModel analysis, the Cramer-Rao lower bound, and the standard errors from regression analyses. The optimized protocol was used to generate normative white and gray matter regressions and evaluate three patients with neocortical abnormalities. RESULTS: As a measure of the sensitivity to detect abnormalities, the standard errors of regression for Cr/NAA and Ch/NAA were significantly correlated with the Cramer-Rao lower bound values (R = 0.89 and 0.92, respectively, both with P < 0.001). The rosette acquisition with a duration of 9.6 min, produces a mean Cramer-Rao lower bound (%) over the entire slab of 4.6 ± 2.6 and 5.8 ± 2.3 for NAA and Cr, respectively. This enables a Cr/NAA standard error of 0.08 (i.e., detection sensitivity of 25% for a 50/50 mixed gray and white matter voxel). In healthy controls, the regression of Cr/NAA versus fraction gray matter in the cingulate differs from frontal and parietal regions. CONCLUSIONS: Fast rosette spectroscopic imaging acquisitions with regression analyses are able to identify metabolic differences across 4-cm slabs of the brain centrally and over the cortical periphery with high efficiency, generating results that are consistent with clinical findings. Magn Reson Med 79:2470-2480, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neocórtex/anormalidades , Neocórtex/diagnóstico por imagem , Adulto , Astrocitoma/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
4.
J Neurol Surg A Cent Eur Neurosurg ; 79(3): 191-195, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29041032

RESUMO

BACKGROUND: All brain surgery requires some degree of iatrogenic trauma to healthy tissue. Minimally invasive approaches to brain tumors offer the potential of decreasing this trauma compared with conventional approaches. However, there are no validated radiologic models to examine axonal damage after minimally invasive entry into the brain. OBJECTIVE: To present a cadaveric model of brain cannulation using fractional anisotropy measurements obtained from diffusion tensor magnetic resonance imaging (MRI). Two different methods of access are compared. METHODS: Freshly harvested unfixed cadaveric brains were cannulated using both direct and indirect (i.e., dilation followed by cannulation) methods. Specimens were subjected to 68-direction diffusion tensor imaging scans and proton-density imaging. Fractional anisotropy (FA) data from a region of interest surrounding the entry zone was extracted from scans using imaging software and analyzed. RESULTS: FA values were significantly higher following indirect cannulation (less invasive method) than they were following direct cannulation. FA values for undisturbed brain were significantly higher than in either of the cannulated groups, suggesting an inverse relationship between FA values and brain injury. CONCLUSION: Axonal damage following brain cannulation can potentially be evaluated by FA analysis in a cadaveric model. These data may lead to an MRI-based model of iatrogenic brain injury following tumor surgery. Future studies will focus on histologic analysis and clinical validation in live tissues.


Assuntos
Lesões Encefálicas/diagnóstico por imagem , Lesões Encefálicas/patologia , Cateterismo , Procedimentos Cirúrgicos Minimamente Invasivos , Substância Branca/diagnóstico por imagem , Substância Branca/cirurgia , Anisotropia , Lesões Encefálicas/etiologia , Cadáver , Imagem de Difusão por Ressonância Magnética , Humanos , Doença Iatrogênica , Substância Branca/patologia
5.
Magn Reson Med ; 72(6): 1696-701, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25241945

RESUMO

PURPOSE: Cellular therapeutics are emerging as a treatment option for a host of serious human diseases. To accelerate clinical translation, noninvasive imaging of cell grafts in clinical trials can potentially be used to assess the initial delivery and behavior of cells. METHODS: The use of a perfluorocarbon (PFC) tracer agent for clinical fluorine-19 ((19) F) MRI cell detection is described. This technology was used to detect immunotherapeutic dendritic cells (DCs) delivered to colorectal adenocarcinoma patients. Autologous DC vaccines were labeled with a PFC MRI agent ex vivo. Patients received DCs intradermally, and (19) F spin-density-weighted MRI at 3 Tesla (T) was used to observe cells. RESULTS: Spin-density-weighted (19) F images at the injection site displayed DCs as background-free "hot-spot" images. (19) F images were acquired in clinically relevant scan times (<10 min). Apparent DC numbers could be quantified in two patients from the (19) F hot-spots and were observed to decrease by ∼50% at injection site by 24 h. From 3T phantom studies, the sensitivity limit for DC detection is estimated to be on the order of ∼10(5) cells/voxel in this study. CONCLUSION: These results help to establish a clinically applicable means to track a broad range of cell types used in cell therapy.


Assuntos
Rastreamento de Células/métodos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Células Dendríticas/patologia , Células Dendríticas/transplante , Imagem por Ressonância Magnética de Flúor-19/métodos , Fluorocarbonos , Adulto , Idoso , Células Cultivadas , Neoplasias Colorretais/imunologia , Meios de Contraste/administração & dosagem , Células Dendríticas/imunologia , Estudos de Viabilidade , Feminino , Fluorocarbonos/administração & dosagem , Humanos , Aumento da Imagem/métodos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Cirurgia Assistida por Computador/métodos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA