Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 153: 106507, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38503082

RESUMO

Polyolefins exhibit robust mechanical and chemical properties and can be applied in the medical field, e.g. for the manufacturing of dentures. Despite their wide range of applications, they are rarely used in extrusion-based printing due to their warpage tendency. The aim of this study was to investigate and reduce the warpage of polyolefins compared to commonly used filaments after additive manufacturing (AM) and sterilization using finite element simulation. Three types of filaments were investigated: a medical-grade polypropylene (PP), a glass-fiber reinforced polypropylene (PP-GF), and a biocopolyester (BE) filament, and they were compared to an acrylic resin (AR) for material jetting. Square specimens, standardized samples prone to warpage, and denture bases (n = 10 of each group), as clinically relevant and anatomically shaped reference, were digitized after AM and steam sterilization (134 °C). To determine warpage, the volume underneath the square specimens was calculated, while the deviations of the denture bases from the printing file were measured using root mean square (RMS) values. To reduce the warpage of the PP denture base, a simulation of the printing file based on thermomechanical calculations was performed. Statistical analysis was conducted using the Kruskal-Wallis test, followed by Dunn's test for multiple comparisons. The results showed that PP exhibited the greatest warpage of the square specimens after AM, while PP-GF, BE, and AR showed minimal warpage before sterilization. However, warpage increased for PP-GF, BE and AR during sterilization, whereas PP remained more stable. After AM, denture bases made of PP showed the highest warpage. Through simulation-based optimization, warpage of the PP denture base was successfully reduced by 25%. In contrast to the reference materials, PP demonstrated greater dimensional stability during sterilization, making it a potential alternative for medical applications. Nevertheless, reducing warpage during the cooling process after AM remains necessary, and simulation-based optimization holds promise in addressing this issue.


Assuntos
Polipropilenos , Vapor , Polienos , Resinas Acrílicas/química , Esterilização
2.
Sci Rep ; 12(1): 7391, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513701

RESUMO

Extrusion-based printing enables simplified and economic manufacturing of surgical guides for oral implant placement. Therefore, the cytotoxicity of a biocopolyester (BE) and a polypropylene (PP), intended for the fused filament fabrication of surgical guides was evaluated. For comparison, a medically certified resin based on methacrylic esters (ME) was printed by stereolithography (n = 18 each group). Human gingival keratinocytes (HGK) were exposed to eluates of the tested materials and an impedance measurement and a tetrazolium assay (MTT) were performed. Modulations in gene expression were analyzed by quantitative PCR. One-way ANOVA with post-hoc Tukey tests were applied. None of the materials exceeded the threshold for cytotoxicity (< 70% viability in MTT) according to ISO 10993-5:2009. The impedance-based cell indices for PP and BE, reflecting cell proliferation, showed little deviations from the control, while ME caused a reduction of up to 45% after 72 h. PCR analysis after 72 h revealed only marginal modulations caused by BE while PP induced a down-regulation of genes encoding for inflammation and apoptosis (p < 0.05). In contrast, the 72 h ME eluate caused an up-regulation of these genes (p < 0.01). All evaluated materials can be considered biocompatible in vitro for short-term application. However, long-term contact to ME might induce (pro-)apoptotic/(pro-)inflammatory responses in HGK.


Assuntos
Polímeros , Estereolitografia , Gengiva , Humanos , Queratinócitos , Polipropilenos/toxicidade
3.
Molecules ; 25(24)2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33333753

RESUMO

A polyolefin with certified biocompatibility according to USP class VI was used by our group as feedstock for filament-based 3D printing to meet the highest medical standards in order to print personal protective equipment for our university hospital during the ongoing pandemic. Besides the chemical resistance and durability, as well as the ability to withstand steam sterilization, this polypropylene (PP) copolymer is characterized by its high purity, as achieved by highly efficient and selective catalytic polymerization. As the PP copolymer is suited to be printed with all common printers in fused filament fabrication (FFF), it offers an eco-friendly cost-benefit ratio, even for large-scale production. In addition, a digital workflow was established focusing on common desktop FFF printers in the medical sector. It comprises the simulation-based optimization of personalized print objects, considering the inherent material properties such as warping tendency, through to validation of the process chain by 3D scanning, sterilization, and biocompatibility analysis of the printed part. This combination of digital data processing and 3D printing with a sustainable and medically certified material showed great promise in establishing decentralized additive manufacturing in everyday hospital life to meet peaks in demand, supply bottlenecks, and enhanced personalized patient treatment.


Assuntos
Polienos/química , Polímeros/química , Humanos , Equipamento de Proteção Individual , Polipropilenos/química , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA