Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1140592, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969210

RESUMO

Objective: The pro-inflammatory cytokine interleukin-1ß (IL-1ß) plays a central role in host defense against infections. High systemic IL-1ß levels, however, promote the pathogenesis of inflammatory disorders. Therefore, mechanisms controlling IL-1ß release are of substantial clinical interest. Recently, we identified a cholinergic mechanism inhibiting the ATP-mediated IL-1ß release by human monocytes via nicotinic acetylcholine receptor (nAChR) subunits α7, α9 and/or α10. We also discovered novel nAChR agonists that trigger this inhibitory function in monocytic cells without eliciting ionotropic functions at conventional nAChRs. Here, we investigate the ion flux-independent signaling pathway that links nAChR activation to the inhibition of the ATP-sensitive P2X7 receptor (P2X7R). Methods: Different human and murine mononuclear phagocytes were primed with lipopolysaccharide and stimulated with the P2X7R agonist BzATP in the presence or absence of nAChR agonists, endothelial NO synthase (eNOS) inhibitors, and NO donors. IL-1ß was measured in cell culture supernatants. Patch-clamp and intracellular Ca2+ imaging experiments were performed on HEK cells overexpressing human P2X7R or P2X7R with point mutations at cysteine residues in the cytoplasmic C-terminal domain. Results: The inhibitory effect of nAChR agonists on the BzATP-induced IL-1ß release was reversed in the presence of eNOS inhibitors (L-NIO, L-NAME) as well as in U937 cells after silencing of eNOS expression. In peripheral blood mononuclear leukocytes from eNOS gene-deficient mice, the inhibitory effect of nAChR agonists was absent, suggesting that nAChRs signal via eNOS to inhibit the BzATP-induced IL-1ß release. Moreover, NO donors (SNAP, S-nitroso-N-acetyl-DL-penicillamine; SIN-1) inhibited the BzATP-induced IL-1ß release by mononuclear phagocytes. The BzATP-induced ionotropic activity of the P2X7R was abolished in the presence of SIN-1 in both, Xenopus laevis oocytes and HEK cells over-expressing the human P2X7R. This inhibitory effect of SIN-1 was absent in HEK cells expressing P2X7R, in which C377 was mutated to alanine, indicating the importance of C377 for the regulation of the P2X7R function by protein modification. Conclusion: We provide first evidence that ion flux-independent, metabotropic signaling of monocytic nAChRs involves eNOS activation and P2X7R modification, resulting in an inhibition of ATP signaling and ATP-mediated IL-1ß release. This signaling pathway might be an interesting target for the treatment of inflammatory disorders.


Assuntos
Leucócitos Mononucleares , Receptores Purinérgicos P2X7 , Humanos , Camundongos , Animais , Interleucina-1beta/metabolismo , Leucócitos Mononucleares/metabolismo , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Monócitos/metabolismo , Trifosfato de Adenosina/metabolismo , Óxido Nítrico Sintase/metabolismo
2.
Eur J Cardiothorac Surg ; 62(4)2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35290463

RESUMO

OBJECTIVES: Clinical studies have indicated minor beneficial effects of the calcium sensitizer levosimendan on clinical outcomes in patients undergoing cardiac surgery. Here, the influence of levosimendan administered 24 h before cardiac arrest on myocardial function was examined in rat hearts perfused in a Langendorff model. METHODS: Levosimendan (Levo group) or NaCl (control group) was administered to 53 rats via drinking water 24 h prior to mounting excised hearts on a Langendorff apparatus. Cardiac arrest with or without cardioplegia was induced in both groups; another set of hearts was perfused continuously. During 90-min reperfusion at 36°C, functional parameters were measured and normalized to baseline values. Troponin I was quantified in coronary sinus effluent, and the functionality of isolated cardiomyocytes was studied. RESULTS: Oral application of levosimendan showed therapeutic efficacy. Baseline values were similar in the Levo and NaCl groups except for coronary flow. After ischaemia and reperfusion, Levo hearts did not recover better than NaCl hearts {left ventricular derived pressure: 63 [standard deviation (SD): 36.2] vs 46 (SD: 41.8)% baseline; P = 0.386}, In hearts exposed to cardioplegia, functional recovery only slightly differed in the Levo and NaCl groups [left ventricular derived pressure: 69.96 (SD: 12.7) vs 51.89 (SD: 28.1)% baseline; P = 0.09]. Cell shortening of cardiomyocytes isolated from hearts exposed to ischaemia or perfusion was better in Levo groups [cell shortening: 7.65 (SD: 1.95) %; 7.8 (SD: 1.79)% vs 6.28 (SD: 1.67)%; 6.5 (SD: 1.87)%, P < 0.001]; this benefit was absent in cardioplegia-treated hearts. CONCLUSIONS: Levosimendan applied orally before ischaemia/reperfusion improves functional recovery, but this effect is only moderate when cardioplegia is included. Differences between hearts exposed to cardioplegia or to global ischaemia may indicate why levosimendan-related beneficial effects do not directly translate into better clinical outcome.


Assuntos
Água Potável , Parada Cardíaca , Animais , Cálcio , Soluções Cardioplégicas/farmacologia , Soluções Cardioplégicas/uso terapêutico , Parada Cardíaca Induzida , Isquemia , Ratos , Reperfusão , Simendana , Cloreto de Sódio , Troponina I
3.
Basic Res Cardiol ; 115(6): 65, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33169229

RESUMO

Proprotein convertase subtilisin kexin type 9 (PCSK9) is in the focus of cardiovascular research due to its role in hepatic low density lipoprotein (LDL) clearance. However, extrahepatic expression of PCSK9 such as in cardiomyocytes and its regulation by oxidized LDL (oxLDL) put notion on extrahepatic effects of PCSK9 as well. This study was aimed to reveal the role of PCSK9 in oxLDL-dependent regulation of cardiomyocyte function. Adult rat and mouse ventricular cardiomyocytes and isolated perfused hearts were used. OxLDL was applied to increase PCSK9 expression in cardiomyocytes. Cell function was analyzed by load-free cell shortening as well as left ventricular developed pressure of isolated hearts. OxLDL decreased shortening in wild-type-derived mouse cardiomyocytes but not in those isolated from PCSK9 knockout mice. Overexpression of human PCSK9 in rat cardiomyocytes reduced shortening in the absence of oxLDL. Addition of recombinant PCSK9 mimicked these effects. In cardiomyocytes, oxLDL induced PCSK9 release into the supernatant. Inhibition of PCSK9 by Pep 2-8 or alirocumab attenuated the oxLDL-induced loss of cardiomyocyte shortening. Cardiomyocytes express surfeit locus protein 4 (SURF-4), a protein required for PCSK9 secretion in human embryonic kidney cells (HEK 293 T), and silencing of SURF-4 reduced the oxLDL effects on cardiomyocytes. In isolated perfused rat hearts PCSK9 inhibition by alirocumab improved the function. In addition, left ventricular function of isolated hearts from PCSK9 knockout mice was increased under basal conditions as well as at 10 min and 120 min of reperfusion following 45 min of ischemia. Collectively, the data show that cardiomyocytes express and release PCSK9 that acts in an autocrine way on cardiomyocytes and impairs their function.


Assuntos
Comunicação Autócrina , Miócitos Cardíacos/enzimologia , Pró-Proteína Convertase 9/metabolismo , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Comunicação Autócrina/efeitos dos fármacos , Células Hep G2 , Humanos , Preparação de Coração Isolado , Lipoproteínas LDL/farmacologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Miocárdica , Miócitos Cardíacos/efeitos dos fármacos , Inibidores de PCSK9 , Pró-Proteína Convertase 9/genética , Ratos Wistar , Inibidores de Serina Proteinase/farmacologia , Transdução de Sinais , Função Ventricular Esquerda , Pressão Ventricular
4.
J Clin Med ; 9(9)2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32906646

RESUMO

Amyloid-ß peptide (Aß1-42), the cleavage product of the evolutionary highly conserved amyloid precursor protein, presumably plays a pathogenic role in Alzheimer's disease. Aß1-42 can induce the secretion of the pro-inflammatory cytokine intereukin-1ß (IL-1ß) in immune cells within and out of the nervous system. Known interaction partners of Aß1-42 are α7 nicotinic acetylcholine receptors (nAChRs). The physiological functions of Aß1-42 are, however, not fully understood. Recently, we identified a cholinergic mechanism that controls monocytic release of IL-1ß by canonical and non-canonical agonists of nAChRs containing subunits α7, α9, and/or α10. Here, we tested the hypothesis that Aß1-42 modulates this inhibitory cholinergic mechanism. Lipopolysaccharide-primed monocytic U937 cells and human mononuclear leukocytes were stimulated with the P2X7 receptor agonist 2'(3')-O-(4-benzoylbenzoyl)adenosine-5'-triphosphate triethylammonium salt (BzATP) in the presence or absence of nAChR agonists and Aß1-42. IL-1ß concentrations were measured in the supernatant. Aß1-42 dose-dependently (IC50 = 2.54 µM) reversed the inhibitory effect of canonical and non-canonical nicotinic agonists on BzATP-mediated IL-1ß-release by monocytic cells, whereas reverse Aß42-1 was ineffective. In conclusion, we discovered a novel pro-inflammatory Aß1-42 function that enables monocytic IL-1ß release in the presence of nAChR agonists. These findings provide evidence for a novel physiological function of Aß1-42 in the context of sterile systemic inflammation.

5.
Cardiovasc Res ; 115(7): 1217-1227, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30850841

RESUMO

AIMS: The role of uncoupling protein 2 (UCP2) in cardiac adaptation to pressure overload remains unclear. In a classical model of left ventricular pressure overload genetic deletion of UCP2 (UCP2-/-) protected against cardiac hypertrophy and failure. However, in UCP2-/- mice increased proliferation of pulmonary arterial smooth muscle cells induces mild pulmonary hypertension, right ventricular (RV) hypertrophy, and reduced cardiac output. This suggests a different role for UCP2 in RV and left ventricular adaptation to pressure overload. To clarify this situation in more detail UCP2-/- and wild-type mice were exposed to pulmonary arterial banding (PAB). METHODS AND RESULTS: Mice were analysed (haemodynamics, morphometry, and echocardiography) 3 weeks after PAB or sham surgery. Myocytes and non-myocytes were isolated and analysed separately. Cell shortening of myocytes and fura-2 loading of cardiomyocytes were used to characterize their function. Brd assay was performed to study fibroblast proliferation. Isolated mitochondria were analysed to investigate the role of UCP2 for reactive oxygen species (ROS) production. UCP2 mRNA was 2.7-fold stronger expressed in RV myocytes than in left ventricular myocytes and stronger expressed in non-myocytes compared with myocytes. Three weeks after PAB, cardiac output was reduced in wild type but preserved in UCP2-/- mice. UCP2-/- had increased RV wall thickness, but lower RV internal diameters and displayed a significant stronger fibrosis. Cardiac fibroblasts from UCP2-/- had reduced proliferation rates but higher collagen-1 expression. Myocytes isolated from mice after PAB banding showed preserved function that was further improved by UCP2-/-. Mitochondrial ROS production and respiration was similar between UCP2-/- or wild-type hearts. CONCLUSION: Despite a mild pulmonary hypertension in UCP2-/- mice, hearts from these mice are well preserved against additional pressure overload (severe pulmonary hypertension). This-at least in part-depends on different behaviour of non-myocytes (fibroblasts).


Assuntos
Fibroblastos/metabolismo , Inativação Gênica , Insuficiência Cardíaca/prevenção & controle , Hipertensão Pulmonar/prevenção & controle , Miócitos Cardíacos/metabolismo , Proteína Desacopladora 2/deficiência , Função Ventricular Direita , Remodelação Ventricular , Animais , Células Cultivadas , Colágeno Tipo I/metabolismo , Modelos Animais de Doenças , Fibroblastos/patologia , Fibrose , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/genética , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/patologia , Espécies Reativas de Oxigênio/metabolismo , Proteína Desacopladora 2/genética , Função Ventricular Esquerda
6.
Physiol Rep ; 6(17): e13842, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30198211

RESUMO

An active lifestyle is generally recommended for hypertensive patients to prevent subsequent end-organ damage. However, experimental data on long-term effects of exercise on hypertension are insufficient and underlying mechanisms are not well understood. This study was aimed to investigate the effect of exercise on renal expression of parathyroid hormone-related protein (PTHrP) and parathyroid hormone receptor type 1 (PTHR1) in spontaneously hypertensive rats (SHR). Twenty-four rats started free running wheel exercise at the age of 1.5 months (pre-hypertensive state) and proceeded for 1.5, 3.0, 6.0, and 10.0 months. Thirty rats kept under standard housing conditions were used as sedentary controls. Kidney function was assessed by measuring plasma creatinine levels and urine albumin-to-creatinine ratios. Renal expression of PTHrP and PTHR1 was analyzed by qRT-PCR and western blot. Renal expression of PTHR1 was markedly increased between the 6th and 10th months in sedentary rats and this increase was significantly lower in SHRs with high physical activity on mRNA (-30%) and protein level (-27%). At the same time, urine albumin-to-creatinine ratio increased (from 65 to 231 mg/g) but somehow lower in exercise performing SHRs (48-196 mg/g). Our data suggest that enhanced exercise, stimulated by allocation of a free running wheel, is associated with lower PTHR1 expression in SHRs and this may contribute to preserved kidney function.


Assuntos
Hipertensão Essencial/metabolismo , Rim/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/genética , Condicionamento Físico Animal/métodos , Receptor Tipo 1 de Hormônio Paratireóideo/genética , Corrida , Animais , Hipertensão Essencial/fisiopatologia , Hipertensão Essencial/terapia , Feminino , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos SHR , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo
7.
Br J Pharmacol ; 174(13): 2060-2073, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28369703

RESUMO

BACKGROUND AND PURPOSE: Dysregulation of gap junction-mediated cell coupling contributes to development of arrhythmias and myocardial damage after ischaemia/reperfusion (I/R). Connexin 43 (Cx43) is present at ventricular gap junctions and also in the mitochondria of cardiomyocytes. The dipeptide (2S, 4R)-1-(2-aminoacetyl)-4-benzamidopyrrolidine-2-carboxylic acid (ZP1609) has antiarrhythmic properties and reduces infarct size when given at reperfusion. However, it is unclear, whether ZP1609 targets Cx43-containing mitochondria and affects cardiomyocyte hypercontracture following I/R. EXPERIMENTAL APPROACH: We studied the effects of ZP1609 on the function of murine sub-sarcolemmal mitochondria (SSM, containing Cx43) and interfibrillar mitochondria (IFM, lacking Cx43). Murine isolated cardiomyocytes were subjected to simulated I/R without and with ZP1609 (applied during I/R or at the onset of reperfusion only), and the number of cardiomyocytes undergoing hypercontracture was quantified. Biochemical pathways targeted by ZP1609 in cardiomyocytes were analysed. KEY RESULTS: ZP1609 inhibited ADP-stimulated respiration and ATP production in SSM and IFM. ROS formation and calcium retention capacities in SSM and IFM were not affected by ZP1609, whereas potassium uptake was enhanced in IFM. The number of rod-shaped cardiomyocytes was increased by ZP1609 (10 µM) when administered either during I/R or reperfusion. ZP1609 altered the phosphorylation of proteins contributing to the protection against I/R injury. CONCLUSIONS AND IMPLICATIONS: ZP1609 reduced mitochondrial respiration and ATP production, but enhanced potassium uptake of IFM. Additionally, ZP1609 reduced the extent of cardiomyocytes undergoing hypercontracture following I/R. The protective effect was independent of mitochondrial Cx43, as ZP1609 exerts its effects in Cx43-containing SSM and Cx43-lacking IFM.


Assuntos
Antiarrítmicos/farmacologia , Conexina 43/antagonistas & inibidores , Dipeptídeos/farmacologia , Isquemia/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Reperfusão , Trifosfato de Adenosina/antagonistas & inibidores , Trifosfato de Adenosina/biossíntese , Animais , Conexina 43/metabolismo , Relação Dose-Resposta a Droga , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
8.
J Cell Mol Med ; 21(1): 96-106, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27581501

RESUMO

Nitric oxide (NO) deficiency is common in pulmonary diseases, but its effect on pulmonary remodelling is still controversial. As pulmonary parathyroid hormone-related protein (PTHrP) expression is a key regulator of pulmonary fibrosis and development, the effect of chronic NO deficiency on the pulmonary PTHrP system and its relationship with oxidative stress was addressed. NO bioavailability in adult rats was reduced by systemic administration of L-NAME via tap water. To clarify the role of NO synthase (NOS)-3-derived NO on pulmonary expression of PTHrP, NOS-3-deficient mice were used. Captopril and hydralazine were used to reduce the hypertensive effect of L-NAME treatment and to interfere with the pulmonary renin-angiotensin system (RAS). Quantitative RT-PCR and immunoblot techniques were used to characterize the expression of key proteins involved in pulmonary remodelling. L-NAME administration significantly reduced pulmonary NO concentration and caused oxidative stress as characterized by increased pulmonary nitrite concentration and increased expression of NOX2, p47phox and p67phox. Furthermore, L-NAME induced the pulmonary expression of PTHrP and of its corresponding receptor, PTH-1R. Expression of PTHrP and PTH-1R correlated with the expression of two well-established PTHrP downstream targets, ADRP and PPARγ, suggesting an activation of the pulmonary PTHrP system by NO deficiency. Captopril reduced the expression of PTHrP, profibrotic markers and ornithine decarboxylase, but neither that of PTH-1R nor that of ADRP and PPARγ. All transcriptional changes were confirmed in NOS-3-deficient mice. In conclusion, NOS-3-derived NO suppresses pulmonary PTHrP and PTH-1R expression, thereby modifying pulmonary remodelling.


Assuntos
Pulmão/metabolismo , Óxido Nítrico/deficiência , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Animais , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Pulmão/efeitos dos fármacos , Pneumopatias/tratamento farmacológico , Pneumopatias/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase/metabolismo , Nitritos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Ratos , Sistema Renina-Angiotensina/efeitos dos fármacos , Sistema Renina-Angiotensina/fisiologia
9.
Thromb Haemost ; 117(2): 371-381, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-27904901

RESUMO

The P2Y12 receptor is a Gi-coupled receptor whose activation inhibits adenylyl cyclase and thereby reduces the concentration of intracellular cAMP. Here the hypothesis was tested whether AR-C 66096 or ticagrelor, two direct-acting and reversibly binding P2Y12 receptor antagonists, protect endothelial cell (EC) barrier function by raising intracellular cAMP in ECs. The study was carried out on primary human umbilical vein ECs (HUVECs) and human pulmonary microvascular ECs (hPMECs). AR-C66096 (10 µM) induced a 50 % increase in cAMP in ECs whereas ticagrelor (2-10 µM) had no effect. Likewise, AR-C666096 antagonised thrombin-induced hyperpermeability in both HUVECs and hPMECs, but ticagrelor had no effect on basal EC monolayer permeability. Ticagrelor, however, sensitised ECs for thrombin-induced hyperpermeability and potentiated the thrombin effect. Ticagrelor but not AR-C66096 caused an increase in cytosolic calcium ([Ca2+]i). This increase in [Ca2+]i was abrogated by LaCl3 (Ca2+ influx inhibitor) but not by xestospongin C (IP3 receptor antagonist) or by depletion of intracellular stores with thapsigargin, suggesting a Ca2+ influx from the extracellular space. Accordingly, ticagrelor caused an increase in myosin light chain (MLC) phosphorylation, an important regulator of EC contractile machinery and thus permeability, which was abrogated by LaCl3. The ability of ticagrelor to potentiate EC permeability was abrogated by a MLC kinase inhibitor (ML-7; 10 µM). Our data demonstrate that the P2Y12 receptor antagonist AR-C66096 exerts a protective effect on ECs in vitro, possibly by raising intracellular cAMP, whereas ticagrelor sensitises EC barrier function by inducing Ca2+ influx and activating downstream EC contractile machinery.


Assuntos
Adenosina/análogos & derivados , Sinalização do Cálcio/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Pulmão/irrigação sanguínea , Microvasos/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Adenosina/farmacologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Células Cultivadas , AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Microvasos/metabolismo , Cadeias Leves de Miosina/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Fosforilação , Receptores Purinérgicos P2Y12/efeitos dos fármacos , Receptores Purinérgicos P2Y12/metabolismo , Ticagrelor , Fatores de Tempo
10.
Am J Physiol Heart Circ Physiol ; 311(4): H927-H943, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27521417

RESUMO

Although incidence and prevalence of prediabetes are increasing, little is known about its cardiac effects. Therefore, our aim was to investigate the effect of prediabetes on cardiac function and to characterize parameters and pathways associated with deteriorated cardiac performance. Long-Evans rats were fed with either control or high-fat chow for 21 wk and treated with a single low dose (20 mg/kg) of streptozotocin at week 4 High-fat and streptozotocin treatment induced prediabetes as characterized by slightly elevated fasting blood glucose, impaired glucose and insulin tolerance, increased visceral adipose tissue and plasma leptin levels, as well as sensory neuropathy. In prediabetic animals, a mild diastolic dysfunction was observed, the number of myocardial lipid droplets increased, and left ventricular mass and wall thickness were elevated; however, no molecular sign of fibrosis or cardiac hypertrophy was shown. In prediabetes, production of reactive oxygen species was elevated in subsarcolemmal mitochondria. Expression of mitofusin-2 was increased, while the phosphorylation of phospholamban and expression of Bcl-2/adenovirus E1B 19-kDa protein-interacting protein 3 (BNIP3, a marker of mitophagy) decreased. However, expression of other markers of cardiac auto- and mitophagy, mitochondrial dynamics, inflammation, heat shock proteins, Ca2+/calmodulin-dependent protein kinase II, mammalian target of rapamycin, or apoptotic pathways were unchanged in prediabetes. This is the first comprehensive analysis of cardiac effects of prediabetes indicating that mild diastolic dysfunction and cardiac hypertrophy are multifactorial phenomena that are associated with early changes in mitophagy, cardiac lipid accumulation, and elevated oxidative stress and that prediabetes-induced oxidative stress originates from the subsarcolemmal mitochondria.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Hipertrofia Ventricular Esquerda/metabolismo , Mitocôndrias Cardíacas/metabolismo , Estresse Oxidativo , Estado Pré-Diabético/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Adipocinas/metabolismo , Tecido Adiposo , Animais , Apoptose , Autofagia , Composição Corporal , Proteínas de Ligação ao Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , Diabetes Mellitus Experimental/fisiopatologia , Neuropatias Diabéticas , Diástole , Dieta Hiperlipídica , Ecocardiografia , GTP Fosfo-Hidrolases , Proteínas de Choque Térmico/metabolismo , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Proteínas de Membrana/metabolismo , Microscopia Eletrônica , Mitocôndrias Cardíacas/ultraestrutura , Proteínas Mitocondriais/metabolismo , Mitofagia , Miocárdio/metabolismo , Miocárdio/ultraestrutura , Fosforilação , Estado Pré-Diabético/fisiopatologia , Ratos , Ratos Long-Evans , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sarcolema , Serina-Treonina Quinases TOR/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia , Pressão Ventricular
11.
Thromb Haemost ; 113(3): 482-93, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25502809

RESUMO

Cardiac ischaemia and reperfusion leads to irreversible injury and subsequent tissue remodelling. Initial reperfusion seems to shift arginine metabolism from nitric oxide (NO) to polyamine formation. This may limit functional recovery at reperfusion. The hypothesis was tested whether ischaemia/reperfusion translates such a shift in arginine metabolism in a tumour necrosis factor (TNF)-α-dependent way and renin-angiotensin system (RAS)-dependent way into a sustained effect. Both, the early post-ischaemic recovery and molecular adaptation to ischaemia/reperfusion were analysed in saline perfused rat hearts undergoing global no-flow ischaemia and reperfusion. Local TNF-α activation was blocked by inhibition of TNF-α sheddase ADAM17. To interfere with RAS captopril was administered. Arginase was inhibited by administration of Nor-NOHA. Long-term effects of ischemia/reperfusion on arginine metabolism were analysed in vivo in rats receiving an established ischaemia/reperfusion protocol in the closed chest mode. mRNA expression analysis indicated a shift in the arginine metabolism from NO formation to polyamine metabolism starting within 2 hours (h) of reperfusion and translated into protein expression within 24 h. Inhibition of the TNF-α pathway and captopril attenuated these delayed effects on post-ischaemic recovery. This shift in arginine metabolism was associated with functional impairment of hearts within 24 h. Inhibition of arginase but not that of TNF-α and RAS pathways improved functional recovery immediately. However, no benefit was observed after four months. In conclusion, this study identified TNF-α and RAS to be responsible for depressed cardiac function that occurred a few hours after reperfusion.


Assuntos
Arginina/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Proteínas ADAM/antagonistas & inibidores , Proteínas ADAM/metabolismo , Proteína ADAM17 , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Arginase/antagonistas & inibidores , Arginase/metabolismo , Captopril/farmacologia , Modelos Animais de Doenças , Preparação de Coração Isolado , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Óxido Nítrico/metabolismo , Poliaminas/metabolismo , Ratos , Recuperação de Função Fisiológica , Sistema Renina-Angiotensina , Transdução de Sinais , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo , Função Ventricular Esquerda
12.
J Cell Physiol ; 229(11): 1681-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24623002

RESUMO

Cardiosphere-derived cells (CDCs) were cultured from human, murine, and rat hearts. Diluted supernatant (conditioned-medium) of the cultures improved the contractile behavior of isolated rat cardiomyocytes (CMCs). This effect is mediated by the paracrine release of cytokines. The present study tested the hypothesis, that the cardiovascular state of the donor's heart influences this effect on CMCs and tries to identify the responsible factors. CDCs were cultured from human tissue samples of cardiac surgery and from murine and rat hearts. The supernatants of cultured CDCs from hypertensive humans and rats showed a higher improvement of the contractile behavior of CMCs compared to CDCs of normotensive origin. Subsequently, the cytokine profile of the supernatants was analyzed. Among the cytokines elevated in supernatants originating from hypertensive humans or rats was Interleukin-6. CDCs were also generated from Interleukin-6(-/-) -mice and their wildtype littermates. The supernatant of the cultured Interleukin-6(-/-) -CDCs had no effect on the contractile behavior, whereas the supernatant of the Interleukin-6(+/+) -CDCs showed a positive effect. To confirm the hypothesis that Interleukin-6 contributes to the paracrine effects, CMCs were incubated with Interleukin-6. It improved the contractile function in a concentration dependent way. Finally, the effect of the supernatant of cultured CDCs derived from a hypertensive human sample could be abolished by simultaneous incubation with a specific Interleukin-6 antibody. CDCs release cytokines that improve the contractile behavior of CMCs. This effect is more intense in CDCs from hypertensive donors. Interleukin-6 is involved in this phenomenon.


Assuntos
Interleucina-6/metabolismo , Miocárdio/citologia , Miócitos Cardíacos/citologia , Comunicação Parácrina , Esferoides Celulares/citologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Especificidade de Anticorpos , Separação Celular , Células Cultivadas , Criança , Pré-Escolar , Meios de Cultivo Condicionados/farmacologia , Feminino , Humanos , Hipertensão/patologia , Hipertensão/fisiopatologia , Lactente , Interleucina-6/deficiência , Masculino , Camundongos , Pessoa de Meia-Idade , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Comunicação Parácrina/efeitos dos fármacos , Ratos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Frações Subcelulares/metabolismo
13.
J Physiol ; 592(8): 1745-56, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24535440

RESUMO

Dopamine not only is a precursor of the catecholamines noradrenaline and adrenaline but also serves as an independent neurotransmitter and paracrine hormone. It plays an important role in the pathogenesis of hypertension and is a potent vasodilator in many mammalian systemic arteries, strongly suggesting an endogenous source of dopamine in the vascular wall. Here we demonstrated dopamine, noradrenaline and adrenaline in rat aorta and superior mesenteric arteries (SMA) by radioimmunoassay. Chemical sympathectomy with 6-hydroxydopamine showed a significant reduction of noradrenaline and adrenaline, while dopamine levels remained unaffected. Isolated endothelial cells were able to synthesize and release dopamine upon cAMP stimulation. Consistent with these data, mRNAs coding for catecholamine synthesizing enzymes, i.e. tyrosine hydroxylase (TH), aromatic l-amino acid decarboxylase, and dopamine-ß-hydroxylase were detected by RT-PCR in cultured endothelial cells from SMA. TH protein was detected by immunohistochemisty and Western blot. Exposure of endothelial cells to hypoxia (1% O2) increased TH mRNA. Vascular smooth muscle cells partially expressed catecholaminergic traits. A physiological role of endogenous vascular dopamine was shown in SMA, where D1 dopamine receptor blockade abrogated hypoxic vasodilatation. Experiments on SMA with endothelial denudation revealed a significant contribution of the endothelium, although subendothelial dopamine release dominated. From these results we conclude that endothelial cells and cells of the underlying vascular wall synthesize and release dopamine in an oxygen-regulated manner. In the splanchnic vasculature, this intrinsic non-neuronal dopamine is the dominating vasodilator released upon lowering of oxygen tension.


Assuntos
Aorta/fisiologia , Hipóxia Celular , Dopamina/metabolismo , Artérias Mesentéricas/fisiologia , Vasodilatação , Animais , Aorta/citologia , Aorta/metabolismo , Descarboxilases de Aminoácido-L-Aromático/genética , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Células Cultivadas , AMP Cíclico/farmacologia , Antagonistas de Dopamina/farmacologia , Dopamina beta-Hidroxilase/genética , Dopamina beta-Hidroxilase/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Artérias Mesentéricas/citologia , Artérias Mesentéricas/metabolismo , Norepinefrina/metabolismo , Ratos , Ratos Wistar , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
14.
J Physiol ; 591(2): 461-73, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23090948

RESUMO

Hypoxia-reoxygenation induces loss of endothelial barrier function and oedema formation, which presents a major impediment for recovery of the organ. The integrity of the endothelial barrier is highly dependent on its contractile machinery and actin dynamics, which are precisely regulated by Rho GTPases. Perturbed activities of these Rho-GTPases under hypoxia-reoxygenation lead to derangement of the actin cytoskeleton and therefore may affect the integrity of the endothelial barrier. The aim of the present study was to analyse the role of these GTPases in regulating endothelial barrier function during hypoxia-reoxygenation in cultured porcine aortic endothelial cells and isolated perfused rat hearts. Hypoxia-reoxygenation induced an increase in albumin permeability of endothelial monolayers accompanied by an activation of the endothelial contractile machinery, derangement of the actin cytoskeleton and loss of VE-cadherin from cellular junctions. Inhibition of contractile activation with ML-7 partially protected against hypoxia-reoxygenation-induced hyperpermeability. Likewise, reoxygenation caused an increase in RhoA and a reduction in Rac1 activity accompanied by enhanced stress fibre formation and loss of peripheral actin. Inhibition of RhoA/rho kinase (Rock) signalling with RhoA or Rock inhibitors led to a complete depolymerisation and derangement of the actin cytoskeleton and worsened hypoxia-reoxygenation-induced hyperpermeability. Activation of Rac1 using a cAMP analogue, 8-CPT-O-Me-cAMP, which specifically activates Epac/Rap1 signalling, restored peripheral localisation of actin and VE-cadherin at cellular junctions and abrogated reoxygenation-induced hyperpermeability. Similar results were reproduced in isolated saline-perfused rat hearts. These data show that activation of Rac1 but not the inhibition of RhoA preserves endothelial integrity against reoxygenation-induced loss of barrier function.


Assuntos
Células Endoteliais/metabolismo , Músculo Liso Vascular/fisiologia , Quinase de Cadeia Leve de Miosina/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Actinas/metabolismo , Junções Aderentes/metabolismo , Animais , Antígenos CD/metabolismo , Aorta/citologia , Aorta/fisiologia , Caderinas/metabolismo , Cálcio/metabolismo , Hipóxia Celular , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Técnicas In Vitro , Permeabilidade , Ratos , Transdução de Sinais , Fibras de Estresse/metabolismo , Suínos , Vasoconstrição , Quinases Associadas a rho/metabolismo
15.
Cell Physiol Biochem ; 29(3-4): 485-92, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22508055

RESUMO

AIMS: The study was aimed to investigate whether nicotine affects endothelial expression of PTHrP and PTHrP receptor, a peptide system involved in endothelial protection against apoptosis. METHODS: Isolated and cultured rat coronary endothelial cells were used. Immunoblot techniques were used to study activation of mitogen-activated protein (MAP) kinases and to quantify PTHrP and PTHrP receptor expression. Real-time RT-PCR was used to quantify PTHrP, PTHrP-receptor, bcl-2, and bax mRNA expression. The rate of apoptosis was determined by HOE33258 staining and confirmed by quantification of the bcl-2-to-bax ratio. In vitro data were compared to hearts from rats exposed to cigarette smoking. RESULTS: Nicotine induced PTHrP protein expression at nanomolar levels and small increases of PTHrP release (≈8%). Antagonists directed against the α7 subunit of cholinergic receptors, the most prominent isoform, attenuated nicotine-dependent increases of PTHrP expression. This effect of nicotine was p38 MAPK dependent. Nicotine at micromolar concentrations reduced PTHrP receptor expression. In vitro and in vivo we found a correlation between PTHrP receptor expression and bcl-2 expression. CONCLUSION: Nicotine induces PTHrP expression in endothelial cells but excessive concentrations of nicotine reduce PTHrP receptor expression thereby attenuating any protective effects of PTHrP against apoptosis.


Assuntos
Células Endoteliais/efeitos dos fármacos , Nicotina/farmacologia , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Receptor Tipo 1 de Hormônio Paratireóideo/efeitos dos fármacos , Animais , Apoptose , Bisbenzimidazol/metabolismo , Bungarotoxinas/farmacologia , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Ativação Enzimática , Flavonoides/farmacologia , Coração/efeitos dos fármacos , Imidazóis/farmacologia , Immunoblotting , Sistema de Sinalização das MAP Quinases , Masculino , Piridinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptor Tipo 1 de Hormônio Paratireóideo/antagonistas & inibidores , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Fumar/efeitos adversos , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
Eur J Cell Biol ; 91(5): 367-74, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22365145

RESUMO

The effects of statin treatment in the setting of heart failure have already been shown. Nevertheless, there is little knowledge about its influence on adrenergic pathways in cardiomyocytes. Therefore, this study investigated the impact of cerivastatin on adrenoceptor-mediated signalling pathways in isolated adult ventricular cardiomyocytes. It focused on two endpoints: hypertrophic growth and TGFbeta expression. Cultured cardiomyocytes were used to study rac activation (analysed by its translocation into the membrane fraction), ROS formation (H(2)DCF fluorescence) and hypertrophic growth ((14)C-phenylalanine incorporation). Alpha- and beta-adrenoceptor stimulation showed significant differences regarding rac activation, ROS formation, and p38 MAP kinase activation. Both alpha- and beta-adrenoceptor stimulation induced TGFbeta expression. Upon activation of alpha-adrenergic signalling - although ROS formation was not influenced by cerivastatin - TGFbeta expression decreased. Following beta stimulation, TGFbeta expression as well as rac and p38 MAP kinase activation were reduced after pre-treatment with cerivastatin. Statin treatment did not show any influence on hypertrophic growth. In summary, this study clearly demonstrates the ability of adrenoceptor stimulation to increase TGFbeta expression. One component of the beneficial effects of statin therapy on heart failure might therefore be due to a dominant reduction and inhibition of TGFbeta, which is involved in many pathophysiological processes in cardiomyocytes.


Assuntos
Ventrículos do Coração/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Piridinas/farmacologia , Receptores Adrenérgicos alfa/metabolismo , Receptores Adrenérgicos beta/metabolismo , Fator de Crescimento Transformador beta/biossíntese , Animais , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Ventrículos do Coração/patologia , Masculino , Miócitos Cardíacos/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridinas/uso terapêutico , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
Naunyn Schmiedebergs Arch Pharmacol ; 384(6): 535-42, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21881857

RESUMO

Intermedin, a novel member of the calcitonin/calcitonin gene-related peptide family identified from vertebrate genomes, may directly affect cardiac function but current studies revealed no clear picture. The aims of our study were to compare direct contractile effects of intermedin on cardiomyocytes to that on the whole organ and to investigate whether intermedin improves postischemic recovery independent of an effect on acute reperfusion injury. Isolated adult rat ventricular cardiomyocytes were electrically paced and cell shortening was monitored as a readout associated to cardiac performance. Calcium transients were analyzed by Fura-2AM loading of these cells. Isolated rat hearts were investigated by Langendorff perfusion under nonischemic conditions and after 45-min no-flow ischemia followed up by 30-min reperfusion prior to drug testing. Intermedin caused a positive contractile effect on cardiomyocytes that was mediated by protein kinase A activation and accompanied by improved calcium transients. In contrast, intermedin reduced left ventricular developed pressure in Langendorff-perfused rat hearts. This negative inotropic effect was attenuated by inhibition of nitric oxide synthesis. In postischemic hearts (impaired nitric oxide synthesis), the negative inotropic effect was attenuated but no positive inotropic effect occurred. However, intermedin caused robust vasodilation in nonischemic and postischemic hearts. Our findings suggest that the peptide binds preferentially to vascular cells in the intact organ. The loss of nitric oxide induction in postischemic hearts attenuates a negative inotropic effect of intermedin but does not improve cardiac performance independent of acute reperfusion injury.


Assuntos
Adrenomedulina/metabolismo , Contração Miocárdica/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/metabolismo , Neuropeptídeos/metabolismo , Adrenomedulina/farmacologia , Animais , Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Coração/efeitos dos fármacos , Coração/fisiopatologia , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Neuropeptídeos/farmacologia , Óxido Nítrico/biossíntese , Ratos , Ratos Wistar , Vasodilatação/efeitos dos fármacos
18.
Circulation ; 123(5): 504-14, 2011 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-21262993

RESUMO

BACKGROUND: Fibroblast growth factor 9 (FGF9) is secreted from bone marrow cells, which have been shown to improve systolic function after myocardial infarction (MI) in a clinical trial. FGF9 promotes cardiac vascularization during embryonic development but is only weakly expressed in the adult heart. METHODS AND RESULTS: We used a tetracycline-responsive binary transgene system based on the α-myosin heavy chain promoter to test whether conditional expression of FGF9 in the adult myocardium supports adaptation after MI. In sham-operated mice, transgenic FGF9 stimulated left ventricular hypertrophy with microvessel expansion and preserved systolic and diastolic function. After coronary artery ligation, transgenic FGF9 enhanced hypertrophy of the noninfarcted left ventricular myocardium with increased microvessel density, reduced interstitial fibrosis, attenuated fetal gene expression, and improved systolic function. Heart failure mortality after MI was markedly reduced by transgenic FGF9, whereas rupture rates were not affected. Adenoviral FGF9 gene transfer after MI similarly promoted left ventricular hypertrophy with improved systolic function and reduced heart failure mortality. Mechanistically, FGF9 stimulated proliferation and network formation of endothelial cells but induced no direct hypertrophic effects in neonatal or adult rat cardiomyocytes in vitro. FGF9-stimulated endothelial cell supernatants, however, induced cardiomyocyte hypertrophy via paracrine release of bone morphogenetic protein 6. In accord with this observation, expression of bone morphogenetic protein 6 and phosphorylation of its downstream targets SMAD1/5 were increased in the myocardium of FGF9 transgenic mice. CONCLUSIONS: Conditional expression of FGF9 promotes myocardial vascularization and hypertrophy with enhanced systolic function and reduced heart failure mortality after MI. These observations suggest a previously unrecognized therapeutic potential for FGF9 after MI.


Assuntos
Fator 9 de Crescimento de Fibroblastos/farmacologia , Insuficiência Cardíaca/prevenção & controle , Infarto do Miocárdio/complicações , Animais , Proteína Morfogenética Óssea 6/genética , Proteína Morfogenética Óssea 6/metabolismo , Fator 9 de Crescimento de Fibroblastos/administração & dosagem , Fator 9 de Crescimento de Fibroblastos/genética , Expressão Gênica/efeitos dos fármacos , Coração , Insuficiência Cardíaca/mortalidade , Hipertrofia Ventricular Esquerda/induzido quimicamente , Camundongos , Camundongos Transgênicos , Neovascularização Patológica/induzido quimicamente , Fosforilação , Ratos , Tetraciclina/farmacologia
19.
J Cell Mol Med ; 15(11): 2478-85, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21199327

RESUMO

Uncontrolled release of Ca(2+) from the sarcoplasmic reticulum (SR) contributes to the reperfusion-induced cardiomyocyte injury, e.g. hypercontracture and necrosis. To find out the underlying cellular mechanisms of this phenomenon, we investigated whether the opening of mitochondrial permeability transition pores (MPTP), resulting in ATP depletion and reactive oxygen species (ROS) formation, may be involved. For this purpose, isolated cardiac myocytes from adult rats were subjected to simulated ischemia and reperfusion. MPTP opening was detected by calcein release and by monitoring the ΔΨ(m). Fura-2 was used to monitor cytosolic [Ca(2+)](i) or mitochondrial calcium [Ca(2+)](m), after quenching the cytosolic compartment with MnCl(2). Mitochondrial ROS [ROS](m) production was detected with MitoSOX Red and mag-fura-2 was used to monitor Mg(2+) concentration, which reflects changes in cellular ATP. Necrosis was determined by propidium iodide staining. Reperfusion led to a calcein release from mitochondria, ΔΨ(m) collapse and disturbance of ATP recovery. Simultaneously, Ca(2+) oscillations occurred, [Ca(2+)](m) and [ROS](m) increased, cells developed hypercontracture and underwent necrosis. Inhibition of the SR-driven Ca(2+) cycling with thapsigargine or ryanodine prevented mitochondrial dysfunction, ROS formation and MPTP opening. Suppression of the mitochondrial Ca(2+) uptake (Ru360) or MPTP (cyclosporine A) significantly attenuated Ca(2+) cycling, hypercontracture and necrosis. ROS scavengers (2-mercaptopropionyl glycine or N-acetylcysteine) had no effect on these parameters, but reduced [ROS](m). In conclusion, MPTP opening occurs early during reperfusion and is due to the Ca(2+) oscillations originating primarily from the SR and supported by MPTP. The interplay between Ca(2+) cycling and MPTP promotes the reperfusion-induced cardiomyocyte hypercontracture and necrosis. Mitochondrial ROS formation is a result rather than a cause of MPTP opening.


Assuntos
Cálcio/metabolismo , Mitocôndrias Cardíacas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Acetilcisteína/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Ciclosporina/farmacologia , Fluoresceínas/análise , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Cardíacas/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial , Necrose , Ratos , Ratos Wistar , Compostos de Rutênio/farmacologia , Rianodina/farmacologia , Tapsigargina/farmacologia , Tiopronina/farmacologia
20.
Cell Physiol Biochem ; 24(5-6): 493-502, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19910689

RESUMO

BACKGROUND: An increased susceptibility of micro-vascular endothelial cells to apoptosis is considered to be an initial event leading to atherosclerosis. Parathyroid hormone-related peptide (PTHrP) is known to protect endothelial cells against apoptosis by the regulation of the anti-apoptotic gene bcl-2. As tissue inhibitor of metalloproteinase (TIMP-1) expression is regulated by bcl-2, we hypothesized that endothelial expression of PTHrP also regulates the expression of TIMP-1. METHODS: The steady state mRNA expressions of bcl-2, bax, TIMP-1, and TIMP-2 were analyzed by real-time RT-PCR and their protein expression by immunoblotting. The tissue distribution of PTHrP was investigated in cryosections of hearts from normotensive and hypertensive rats. RESULTS: Phenylephrine, an alpha(1)-adrenoceptor agonist, increased the expression of PTHrP, bcl-2, and TIMP-1. Transfection of endothelial cells with oligonucleotides directed against PTHrP attenuated this effect. Antisense transfection and TGF-beta(1) (10 ng/ml) decreased the expression of PTHrP, bcl-2, TIMP-1, and TIMP-2, but not that of bax. Endothelial cells were identified as the main source of PTHrP in the heart. Endothelial cells in hearts from spontaneously hypertensive rats showed reduced staining with a PTHrP antibody compared to control normotensive hearts. CONCLUSIONS: These data suggests that the down-regulation of PTHrP favours atherosclerosis in chronic pressure overload.


Assuntos
Vasos Coronários/citologia , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Animais , Apoptose , Células Cultivadas , Regulação para Baixo , Masculino , Proteína Relacionada ao Hormônio Paratireóideo/genética , Fenilefrina/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Antissenso/metabolismo , Ratos , Ratos Wistar , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-2/genética , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA