Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Lasers Surg Med ; 49(3): 233-239, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27636715

RESUMO

BACKGROUND AND OBJECTIVE: Diagnosis of esophageal diseases is often hampered by sampling errors that are inherent in endoscopic biopsy, the standard of care. Spectrally encoded confocal microscopy (SECM) is a high-speed reflectance confocal endomicroscopy technology that has the potential to visualize cellular features from large regions of the esophagus, greatly decreasing the likelihood of sampling error. In this paper, we report results from a pilot clinical study imaging the human esophagus in vivo with a prototype SECM endoscopic probe. MATERIALS AND METHODS: In this pilot clinical study, six patients undergoing esophagogastroduodenoscopy (EGD) for surveillance of Barrett's esophagus (BE) were imaged with the SECM endoscopic probe. The device had a diameter of 7 mm, a length of 2 m, and a rapid-exchange guide wire provision for esophageal placement. During EGD, the distal portion of the esophagus of each patient was sprayed with 2.5% acetic acid to enhance nuclear contrast. The SECM endoscopic probe was then introduced over the guide wire to the distal esophagus and large-area confocal images were obtained by helically scanning the optics within the SECM probe. RESULTS: Large area confocal images of the distal esophagus (image length = 4.3-10 cm; image width = 2.2 cm) were rapidly acquired at a rate of ∼9 mm2 /second, resulting in short procedural times (1.8-4 minutes). SECM enabled the visualization of clinically relevant architectural and cellular features of the proximal stomach and normal and diseased esophagus, including squamous cell nuclei, BE glands, and goblet cells. CONCLUSIONS: This study demonstrates that comprehensive spectrally encoded confocal endomicroscopy is feasible and can be used to visualize architectural and cellular microscopic features from large segments of the distal esophagus at the gastroesophageal junction. By providing microscopic images that are less subject to sampling error, this technology may find utility in guiding biopsy and planning and assessing endoscopic therapy. Lasers Surg. Med. 49:233-239, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Esôfago de Barrett/patologia , Endoscopia do Sistema Digestório/métodos , Neoplasias Esofágicas/patologia , Microscopia Confocal/métodos , Lesões Pré-Cancerosas/patologia , Esôfago de Barrett/diagnóstico , Biópsia por Agulha , Diagnóstico Diferencial , Neoplasias Esofágicas/diagnóstico , Feminino , Humanos , Imuno-Histoquímica , Masculino , Monitorização Fisiológica/métodos , Projetos Piloto , Lesões Pré-Cancerosas/diagnóstico , Estudos de Amostragem
2.
Endosc Int Open ; 2(3): E135-40, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26134959

RESUMO

BACKGROUND AND STUDY AIMS: Biopsy sampling error can be a problem for the diagnosis of certain gastrointestinal tract diseases. Spectrally-encoded confocal microscopy (SECM) is a high-speed reflectance confocal microscopy technology that has the potential to overcome sampling error by imaging large regions of gastrointestinal tract tissues. The aim of this study was to test a recently developed SECM endoscopic probe for comprehensively imaging large segments of the esophagus at the microscopic level in vivo. METHODS: Topical acetic acid was endoscopically applied to the esophagus of a normal living swine. The 7 mm diameter SECM endoscopic probe was transorally introduced into the esophagus over a wire. Optics within the SECM probe were helically scanned over a 5 cm length of the esophagus. Confocal microscopy data was displayed and stored in real time. RESULTS: Very large confocal microscopy images (length = 5 cm; circumference = 2.2 cm) of swine esophagus from three imaging depths, spanning a total area of 33 cm(2), were obtained in about 2 minutes. SECM images enabled the visualization of cellular morphology of the swine esophagus, including stratified squamous cell nuclei, basal cells, and collagen within the lamina propria. CONCLUSIONS: The results from this study suggest that the SECM technology can rapidly provide large, contiguous confocal microscopy images of the esophagus in vivo. When applied to human subjects, the unique comprehensive, microscopic imaging capabilities of this technology may be utilized for improving the screening and surveillance of various esophageal diseases.

3.
Nat Struct Mol Biol ; 20(10): 1191-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24013206

RESUMO

Germline missense mutations affecting a single BRCA2 allele predispose humans to cancer. Here we identify a protein-targeting mechanism that is disrupted by the cancer-associated mutation, BRCA2(D2723H), and that controls the nuclear localization of BRCA2 and its cargo, the recombination enzyme RAD51. A nuclear export signal (NES) in BRCA2 is masked by its interaction with a partner protein, DSS1, such that point mutations impairing BRCA2-DSS1 binding render BRCA2 cytoplasmic. In turn, cytoplasmic mislocalization of mutant BRCA2 inhibits the nuclear retention of RAD51 by exposing a similar NES in RAD51 that is usually obscured by the BRCA2-RAD51 interaction. Thus, a series of NES-masking interactions localizes BRCA2 and RAD51 in the nucleus. Notably, BRCA2(D2723H) decreases RAD51 nuclear retention even when wild-type BRCA2 is also present. Our findings suggest a mechanism for the regulation of the nucleocytoplasmic distribution of BRCA2 and RAD51 and its impairment by a heterozygous disease-associated mutation.


Assuntos
Genes BRCA2 , Sinais de Exportação Nuclear , Mutação Puntual , Sequência de Aminoácidos , Núcleo Celular/metabolismo , Humanos , Dados de Sequência Molecular , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Rad51 Recombinase/metabolismo , Homologia de Sequência de Aminoácidos
4.
Chemphyschem ; 12(3): 673-680, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21308945

RESUMO

Misfolding and aggregation of amyloidogenic polypeptides lie at the root of many neurodegenerative diseases. Whilst protein aggregation can be readily studied in vitro by established biophysical techniques, direct observation of the nature and kinetics of aggregation processes taking place in vivo is much more challenging. We describe here, however, a Förster resonance energy transfer sensor that permits the aggregation kinetics of amyloidogenic proteins to be quantified in living systems by exploiting our observation that amyloid assemblies can act as energy acceptors for variants of fluorescent proteins. The observed lifetime reduction can be attributed to fluorescence energy transfer to intrinsic energy states associated with the growing amyloid species. Indeed, for a-synuclein, a protein whose aggregation is linked to Parkinson's disease, we have used this sensor to follow the kinetics of the self-association reactions taking place in vitro and in vivo and to reveal the nature of the ensuing aggregated species. Experiments were conducted in vitro, in cells in culture and in living Caenorhabditis elegans. For the latter the readout correlates directly with the appearance of a toxic phenotype. The ability to measure the appearance and development of pathogenic amyloid species in a living animal and the ability to relate such data to similar processes observed in vitro provides a powerful new tool in the study of the pathology of the family of misfolding disorders. Our study confirms the importance of the molecular environment in which aggregation reactions take place, highlighting similarities as well as differences between the processes occurring in vitro and in vivo, and their significance for defining the molecular physiology of the diseases with which they are associated.


Assuntos
Amiloide/química , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Caenorhabditis elegans/metabolismo , Linhagem Celular Tumoral , Transferência Ressonante de Energia de Fluorescência , Humanos , Cinética , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
5.
Methods Mol Biol ; 586: 117-42, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19768427

RESUMO

Fluorescence microscopy is a non-invasive technique that allows high resolution imaging of cytoskeletal structures. Advances in the field of fluorescent labelling (e.g., fluorescent proteins, quantum dots, tetracystein domains) and optics (e.g., super-resolution techniques and quantitative methods) not only provide better images of the cytoskeleton, but also offer an opportunity to quantify the complex of molecular events that populate this highly organised, yet dynamic, structure.For instance, fluorescence lifetime imaging microscopy and Förster resonance energy transfer imaging allow mapping of protein-protein interactions; furthermore, techniques based on the measurement of photobleaching kinetics (e.g., fluorescence recovery after photobleaching, fluorescence loss in photobleaching, and fluorescence localisation after photobleaching) permit the characterisation of axonal transport and, more generally, diffusion of relevant biomolecules.Quantitative fluorescence microscopy techniques offer powerful tools for understanding the physiological and pathological roles of molecular machineries in the living cell.


Assuntos
Microscopia de Fluorescência/métodos , Animais , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Recuperação de Fluorescência Após Fotodegradação/métodos , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neuroblastoma/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA