Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Genet Metab ; 140(3): 107681, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37604084

RESUMO

In early-onset (EO) cblC deficiency (MMACHC), hydroxocobalamin dose-intensification (OHCBL-DI) improved biochemical and clinical outcome. In mammals, Cobalamin is reduced, in a reaction mediated by MMACHC. Pathogenic variants in MMACHC disrupt the synthesis pathway of methyl-cobalamin (MetCbl) and 5'-deoxy-adenosyl-cobalamin (AdoCbl), cofactors for both methionine synthase (MS) and methyl-malonyl-CoA mutase (MCM) enzymes. In 5 patients (pts.), with EO cblC deficiency, biochemical and clinical responses were studied following OHCbl-DI (mean ± SD 6,5 ± 3,3 mg/kg/day), given early, before age 5 months (pts. 1, 2, 3 and 4) or lately, at age 5 years (pt. 5). In all pts., total homocysteine (tHcy), methyl-malonic acid (MMA) and Cob(III)alamin levels were measured. Follow-up was performed during 74/12 years (pts. 1, 2, 3), 33/12 years (pt. 4) and 34/12 years (pt. 5). OHCbl was delivered intravenously or subcutaneously. Mean ± SD serum Cob(III)alamin levels were 42,2 × 106 ± 28, 0 × 106 pg/ml (normal: 200-900 pg/ml). In all pts., biomarkers were well controlled. All pts., except pt. 5, who had poor vision, had central vision, mild to moderate nystagmus, and with peri-foveolar irregularity in pts. 1, 2 and 4, yet none had the classic bulls' eye maculopathy and retinal degeneration characteristic of pts. with EO cblC deficiency. Only pt. 5, had severe cognitive deficiency. Both visual and cognitive functions were better preserved with early than with late OHCBL-DI. OHCBL-DI is suggested to bypass MMACHC, subsequently to be rescued by methionine synthase reductase (MSR) and adenosyl-transferase (ATR) to obtain Cob(I)alamin resulting in improved cognitive and retinal function in pts. with EO cblC deficiency.


Assuntos
Disfunção Cognitiva , Homocistinúria , Degeneração Macular , Deficiência de Vitamina B 12 , Pré-Escolar , Humanos , Lactente , Masculino , Disfunção Cognitiva/tratamento farmacológico , Homocistinúria/tratamento farmacológico , Homocistinúria/genética , Hidroxocobalamina/uso terapêutico , Degeneração Macular/tratamento farmacológico , Mamíferos , Oxirredutases , Vitamina B 12/metabolismo , Deficiência de Vitamina B 12/tratamento farmacológico
2.
Int J Mol Sci ; 19(6)2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29882856

RESUMO

The introduction of novel frontline agents in multiple myeloma (MM), like immunomodulatory drugs and proteasome inhibitors, has improved the overall survival of patients. Yet, MM is still not curable, and drug resistance (DR) remains the main challenge. To improve the understanding of DR in MM, we established a resistant cell line (MOLP8/R). The exploration of DR mechanisms yielded an overexpression of HIF1α, due to impaired proteasome activity of MOLP8/R. We show that MOLP8/R, like other tumor cells, overexpressing HIF1α, have an increased resistance to the immune system. By exploring the main target genes regulated by HIF1α, we could not show an overexpression of these targets in MOLP8/R. We, however, show that MOLP8/R cells display a very high overexpression of LCP1 gene (l-Plastin) controlled by HIF1α, and that this overexpression also exists in MM patient samples. The l-Plastin activity is controlled by its phosphorylation in Ser5. We further show that the inhibition of l-Plastin phosphorylation restores the sensitivity of MOLP8/R to immunomodulatory drugs (IMiDs) and proteasome inhibitors (PIs). Our results reveal a new target gene of DR, controlled by HIF1α.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Glicoproteínas de Membrana/genética , Proteínas dos Microfilamentos/genética , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Regulação para Cima , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Citotoxicidade Imunológica/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Fatores Imunológicos/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Mieloma Múltiplo/patologia , Fosforilação/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
3.
PLoS One ; 10(6): e0130339, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26091518

RESUMO

Epigenetic modifications play a major role in the development of multiple myeloma. We have previously reported that the PPARγ agonist pioglitazone (PIO) enhances, in-vitro, the cytotoxic effect of the Histone deacetylase inhibitor (HDACi), valproic acid (VPA), on multiple myeloma cells. Here, we described the development of a new multiple myeloma mouse model using MOLP8 cells, in order to evaluate the effect of VPA/PIO combination on the progression of myeloma cells, by analyzing the proliferation of bone marrow plasma cells. We showed that VPA/PIO delays the progression of the disease and the invasion of myeloma cells in the bone marrow. Mechanistically, we demonstrated that VPA/PIO increases the cleavage of caspase 3 and PARP, and induces the acetylation of Histone 3 (H3). Furthermore, we provided evidence that PPARγ agonist is able to enhance the action of other HDACi such as Vorinostat or Mocetinostat. Using PPARγ antagonist or siPPARγ, we strongly suggest that, as described during adipogenesis, PIO behaves as an epigenetic regulator by improving the activity of HDACi. This study highlights the therapeutic benefit of PIO/VPA combination, compared to VPA treatment as a single-arm therapy on multiple myeloma and further highlights that such combination may constitute a new promising treatment strategy which should be supported by clinical trials.


Assuntos
Antineoplásicos/farmacologia , Benzamidas/farmacologia , Epigênese Genética/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Mieloma Múltiplo/genética , Pirimidinas/farmacologia , Animais , Sobrevivência Celular , Sinergismo Farmacológico , Feminino , Concentração Inibidora 50 , Camundongos Endogâmicos NOD , Camundongos SCID , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , PPAR gama/agonistas , Vorinostat , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA