Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Tissue Eng Part C Methods ; 18(9): 688-96, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22429453

RESUMO

Due to its biological significance, cell adhesion to biomaterial surfaces or scaffolds is the key step in biomedical applications. Here, we describe two sensitive and facile methods that quantify the kinetic and mechanic properties of the entire cell attachment process characterized by two parameters: Adhesion Time T(Ad) and Adhesion Force F(Ad). We demonstrate that both methods can be applied to any adherent cell type (e.g., stem or cancer cells), tissue-engineered substrate, and culture condition in a fast, effective, and reproducible manner. Additional investigations about the role of the extracellular matrix and the formation of focal contacts help in acquiring further interpretations of these parameters from biological and mechanical points of view.


Assuntos
Adesão Celular , Técnicas de Cultura de Células , Tecido Adiposo/citologia , Adsorção , Animais , Materiais Biocompatíveis/química , Junções Célula-Matriz/metabolismo , Desenho de Equipamento , Células HeLa , Humanos , Cinética , Células-Tronco Mesenquimais/citologia , Modelos Estatísticos , Reprodutibilidade dos Testes , Células-Tronco/citologia , Estresse Mecânico , Suínos , Fatores de Tempo , Engenharia Tecidual/métodos , Alicerces Teciduais
2.
Tissue Eng Part C Methods ; 17(10): 973-82, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21585313

RESUMO

Utilization of living cells for therapies in regenerative medicine requires a fundamental understanding of the interactions between different cells and their environment. Moreover, common models based on adherent two-dimensional cultures are not appropriate to simulate the complex interactions that occur in a three-dimensional (3D) cell-microenvironment in vivo. In this study, we present a computer-aided method for the printing of multiple cell types in a 3D array using laser-assisted bioprinting. By printing spots of human adipose-derived stem cells (ASCs) and endothelial colony-forming cells (ECFCs), we demonstrate that (i) these cell spots can be arranged layer-by-layer in a 3D array; (ii) any cell-cell ratio, cell quantity, cell-type combination, and spot spacing can be realized within this array; and (iii) the height of the 3D array is freely scalable. As a proof of concept, we printed separate spots of ASCs and ECFCs within a 3D array and observed cell-cell interactions in vascular endothelial growth factor-free medium. It has been demonstrated that direct cell-cell contacts trigger the development of stable vascular-like networks. This method can be applied to study complex and dynamic relationships between cells and their local environment.


Assuntos
Comunicação Celular , Células Endoteliais/citologia , Lasers , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Animais , Bovinos , Comunicação Celular/efeitos dos fármacos , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Ensaio de Unidades Formadoras de Colônias , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Microscopia Confocal , Microscopia de Fluorescência , Neovascularização Fisiológica/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/farmacologia
3.
Tissue Eng Part C Methods ; 17(1): 79-87, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20673023

RESUMO

Stem cells are of widespread interest in regenerative medicine due to their capability of self-renewal and differentiation, which is regulated by their three-dimensional microenvironment. In this study, a computer-aided biofabrication technique based on laser-induced forward transfer (LIFT) is used to generate grafts consisting of mesenchymal stem cells (MSCs). We demonstrate that (i) laser printing does not cause any cell damage; (ii) laser-printed MSC grafts can be differentiated toward bone and cartilage; (iii) LIFT allows printing of cell densities high enough for the promotion of chondrogenesis; (iv) with LIFT three-dimensional scaffold-free autologous tissue grafts can be fabricated keeping their predefined structure, and (v) predifferentiated MSCs survived the complete printing procedure and kept their functionality. We believe that our results will find important applications in stem cell biology and tissue engineering.


Assuntos
Células-Tronco Mesenquimais/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Bioimpressão/métodos , Osso e Ossos/citologia , Cartilagem/citologia , Técnicas de Cultura de Células , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Sobrevivência Celular , Células Cultivadas/citologia , Condrócitos/citologia , Condrogênese , Hidrogéis/química , Imageamento Tridimensional , Lasers , Osteogênese , Medicina Regenerativa/métodos , Suínos
4.
Tissue Eng Part C Methods ; 16(5): 847-54, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19883209

RESUMO

Laser printing based on laser-induced forward transfer (LIFT) is a new biofabrication technique for the arrangement of biological materials or living cells in well-defined patterns. In the current study, skin cell lines (fibroblasts/keratinocytes) and human mesenchymal stem cells (hMSC) were chosen for laser printing experiments due to their high potential in regeneration of human skin and new application possibilities of stem cell therapy. To evaluate the influence of LIFT on the cells, their survival rate, their proliferation and apoptotic activity, and the DNA damages and modifications of their cell surface markers were assessed and statistically evaluated over several days. The cells survived the transfer procedure with a rate of 98% +/- 1% standard error of the mean (skin cells) and 90% +/- 10% (hMSC), respectively. All used cell types maintain their ability to proliferate after LIFT. Further, skin cells and hMSC did not show an increase of apoptosis or DNA fragmentation. In addition, the hMSC keep their phenotype as proven by fluorescence activated cell sorting (FACS) analysis. This study demonstrates LIFT as a suitable technique for unharmed computer-controlled positioning of different cell types and a promising tool for future applications in the ex vivo generation of tissue replacements.


Assuntos
Lasers , Células-Tronco Mesenquimais/citologia , Pele/citologia , Animais , Apoptose , Separação Celular , Fragmentação do DNA , Citometria de Fluxo , Humanos , Camundongos , Células NIH 3T3
5.
J Biomater Appl ; 25(3): 217-33, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19773322

RESUMO

In this study we investigate the potential of femtosecond laser generated micrometer sized spike structures as functional surfaces for selective cell controlling. The spike dimensions as well as the average spike to spike distance can be easily tuned by varying the process parameters. Moreover, negative replications in soft materials such as silicone elastomer can be produced. This allows tailoring of wetting properties of the spike structures and their negative replicas representing a reduced surface contact area. Furthermore, we investigated material effects on cellular behavior. By comparing human fibroblasts and SH-SY5Y neuroblastoma cells we found that the influence of the material was cell specific. The cells not only changed their morphology, but also the cell growth was affected. Whereas, neuroblastoma cells proliferated at the same rate on the spike structures as on the control surfaces, the proliferation of fibroblasts was reduced by the spike structures. These effects can result from the cell specific adhesion patterns as shown in this work. These findings show a possibility to design defined surface microstructures, which could control cellular behavior in a cell specific manner.


Assuntos
Materiais Biocompatíveis/química , Fenômenos Fisiológicos Celulares , Lasers , Silício/química , Materiais Biocompatíveis/efeitos adversos , Materiais Biocompatíveis/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Proliferação de Células , Dano ao DNA , Elastômeros/efeitos adversos , Elastômeros/química , Elastômeros/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Testes de Mutagenicidade , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Neuroblastoma/metabolismo , Silício/efeitos adversos , Silício/metabolismo , Propriedades de Superfície , Fatores de Tempo
6.
J Biomater Appl ; 22(3): 275-87, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17494962

RESUMO

Two-photon polymerization technique was applied to generate three-dimensional (3D) scaffold-like structures using the photosensitive organic-inorganic hybrid polymer ORMOCER. The structures were studied with respect to potential applications as scaffold for tissue engineering. Cell counting and comet assay, respectively, demonstrated that doubling time and DNA strand breaks of CHO cells, GFSHR-17 granulosa cells, GM-7373 endothelial cells, and SH-SY5Y neuroblastoma cells were not affected by ORMOCER. ORMOCER related alteration of formation of tissue specific cell-to-cell adhesions like gap junctions was ruled out by double whole-cell patch-clamp technique. Additionally, growth of cells on the vertical surfaces of 3D structures composed of ORMOCER is shown.


Assuntos
Proliferação de Células/efeitos dos fármacos , Cerâmica/farmacologia , Regeneração Tecidual Guiada/métodos , Fotoquímica/métodos , Silanos/farmacologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/efeitos da radiação , Células CHO , Adesão Celular/efeitos dos fármacos , Adesão Celular/fisiologia , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/genética , Linhagem Celular Tumoral , Cerâmica/química , Cerâmica/efeitos da radiação , Desenho Assistido por Computador/tendências , Cricetinae , Cricetulus , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/fisiologia , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/fisiologia , Regeneração Tecidual Guiada/instrumentação , Humanos , Lasers , Teste de Materiais/métodos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Cerâmicas Modificadas Organicamente , Polímeros/química , Polímeros/farmacologia , Polímeros/efeitos da radiação , Silanos/química , Silanos/efeitos da radiação , Engenharia Tecidual/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA