Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35563018

RESUMO

DYT1 dystonia is a debilitating neurological movement disorder that arises upon Torsin ATPase deficiency. Nuclear envelope (NE) blebs that contain FG-nucleoporins (FG-Nups) and K48-linked ubiquitin are the hallmark phenotype of Torsin manipulation across disease models of DYT1 dystonia. While the aberrant deposition of FG-Nups is caused by defective nuclear pore complex assembly, the source of K48-ubiquitylated proteins inside NE blebs is not known. Here, we demonstrate that the characteristic K48-ubiquitin accumulation inside blebs requires p97 activity. This activity is highly dependent on the p97 adaptor UBXD1. We show that p97 does not significantly depend on the Ufd1/Npl4 heterodimer to generate the K48-ubiquitylated proteins inside blebs, nor does inhibiting translation affect the ubiquitin sequestration in blebs. However, stimulating global ubiquitylation by heat shock greatly increases the amount of K48-ubiquitin sequestered inside blebs. These results suggest that blebs have an extraordinarily high capacity for sequestering ubiquitylated protein generated in a p97-dependent manner. The p97/UBXD1 axis is thus a major factor contributing to cellular DYT1 dystonia pathology and its modulation represents an unexplored potential for therapeutic development.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Adenosina Trifosfatases , Proteínas Relacionadas à Autofagia , Distonia , Membrana Nuclear , Proteínas Nucleares , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Estruturas da Membrana Celular/metabolismo , Distonia/genética , Distonia/metabolismo , Distonia Muscular Deformante , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Membrana Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ubiquitina/metabolismo
2.
J Cell Biol ; 219(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32342107

RESUMO

Nuclear envelope herniations (blebs) containing FG-nucleoporins and ubiquitin are the phenotypic hallmark of Torsin ATPase manipulation. Both the dynamics of blebbing and the connection to nuclear pore biogenesis remain poorly understood. We employ a proteomics-based approach to identify myeloid leukemia factor 2 (MLF2) as a luminal component of the bleb. Using an MLF2-based live-cell imaging platform, we demonstrate that nuclear envelope blebbing occurs rapidly and synchronously immediately after nuclear envelope reformation during mitosis. Bleb formation is independent of ubiquitin conjugation within the bleb, but strictly dependent on POM121, a transmembrane nucleoporin essential for interphase nuclear pore biogenesis. Nup358, a late marker for interphase nuclear pore complex (NPC) biogenesis, is underrepresented relative to FG-nucleoporins in nuclear envelopes of Torsin-deficient cells. The kinetics of bleb formation, its dependence on POM121, and a reduction of mature NPCs in Torsin-deficient cells lead us to conclude that the hallmark phenotype of Torsin manipulation represents aberrant NPC intermediates.


Assuntos
Chaperonas Moleculares/metabolismo , Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Técnicas de Inativação de Genes , Células HeLa , Humanos , Interfase/genética , Interfase/fisiologia , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/metabolismo , Microscopia Eletrônica de Transmissão , Mitose/genética , Mitose/fisiologia , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Membrana Nuclear/genética , Membrana Nuclear/ultraestrutura , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Nucleares/genética , RNA Interferente Pequeno , Ubiquitina/química , Ubiquitina/metabolismo
3.
Biomolecules ; 10(3)2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204310

RESUMO

Torsin ATPases are members of the AAA+ (ATPases associated with various cellular activities) superfamily of proteins, which participate in essential cellular processes. While AAA+ proteins are ubiquitously expressed and demonstrate distinct subcellular localizations, Torsins are the only AAA+ to reside within the nuclear envelope (NE) and endoplasmic reticulum (ER) network. Moreover, due to the absence of integral catalytic features, Torsins require the NE- and ER-specific regulatory cofactors, lamina-associated polypeptide 1 (LAP1) and luminal domain like LAP1 (LULL1), to efficiently trigger their atypical mode of ATP hydrolysis. Despite their implication in an ever-growing list of diverse processes, the specific contributions of Torsin/cofactor assemblies in maintaining normal cellular physiology remain largely enigmatic. Resolving gaps in the functional and mechanistic principles of Torsins and their cofactors are of considerable medical importance, as aberrant Torsin behavior is the principal cause of the movement disorder DYT1 early-onset dystonia. In this review, we examine recent findings regarding the phenotypic consequences of compromised Torsin and cofactor activities. In particular, we focus on the molecular features underlying NE defects and the contributions of Torsins to nuclear pore complex biogenesis, as well as the growing implications of Torsins in cellular lipid metabolism. Additionally, we discuss how understanding Torsins may facilitate the study of essential but poorly understood processes at the NE and ER, and aid in the development of therapeutic strategies for dystonia.


Assuntos
Distonia/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Chaperonas Moleculares/metabolismo , Membrana Nuclear/metabolismo , Animais , Distonia/genética , Distonia/patologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/patologia , Proteínas de Choque Térmico HSC70/genética , Humanos , Chaperonas Moleculares/genética , Membrana Nuclear/genética , Membrana Nuclear/patologia
4.
J Clin Invest ; 129(11): 4576-4579, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31589164

RESUMO

Mutations affecting the integrity of the essential torsin ATPase/cofactor system have been identified in a steadily increasing number of congenital disorders. Since most of these mutations affect brain function, much of the research has focused on deciphering disease etiology in the brain. However, torsin is expressed in a wide variety of nonneural tissues and is strictly conserved across species, including the lowest metazoans, suggesting that it plays roles extending beyond neurons. In this issue of the JCI, Shin et al. explored torsin function in the mammalian liver. The group reports major defects in hepatic lipid metabolism when the torsin system is compromised in mice. Remarkably, conditional deletion of either torsinA or its cofactor, lamina-associated polypeptide 1 (LAP1), resulted in fatty liver disease and steatohepatitis, likely from a secretion defect of VLDLs. This study considerably expands our understanding of torsin biology, while providing defined opportunities for future investigations of torsin function and dysfunction in human pathologies.


Assuntos
Fígado Gorduroso , Membrana Nuclear , Animais , Humanos , Proteínas de Membrana , Camundongos , Peptídeos
5.
Mol Biol Cell ; 28(21): 2765-2772, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28814508

RESUMO

TorsinA is an essential AAA+ ATPase requiring LAP1 or LULL1 as cofactors. The dynamics of the Torsin/cofactor system remain poorly understood, with previous models invoking Torsin/cofactor assemblies with fixed stoichiometries. Here we demonstrate that TorsinA assembles into homotypic oligomers in the presence of ATP. Torsin variants mutated at the "back" interface disrupt homo-oligomerization but still show robust ATPase activity in the presence of its cofactors. These Torsin mutants are severely compromised in their ability to rescue nuclear envelope defects in Torsin-deficient cells, suggesting that TorsinA homo-oligomers play a key role in vivo. Engagement of the oligomer by LAP1 triggers ATP hydrolysis and rapid complex disassembly. Thus the Torsin complex is a highly dynamic assembly whose oligomeric state is tightly controlled by distinctively localized cellular cofactors. Our discovery that LAP1 serves as a modulator of the oligomeric state of an AAA+ protein establishes a novel means of regulating this important class of oligomeric ATPases.


Assuntos
Proteínas de Choque Térmico HSC70/metabolismo , Chaperonas Moleculares/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/metabolismo , Células HEK293 , Células HeLa , Humanos , Hidrólise , Proteínas de Membrana/metabolismo , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Mutação , Membrana Nuclear/metabolismo
6.
Mol Biol Cell ; 27(25): 3964-3971, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27798237

RESUMO

The human genome encodes four Torsin ATPases, the functions of which are poorly understood. In this study, we use CRISPR/Cas9 engineering to delete all four Torsin ATPases individually and in combination. Using nuclear envelope (NE) blebbing as a phenotypic measure, we establish a direct correlation between the number of inactivated Torsin alleles and the occurrence of omega-shaped herniations within the lumen of the NE. A similar, although not identical, redundancy is observed for LAP1 and LULL1, which serve as regulatory cofactors for a subset of Torsin ATPases. Unexpectedly, deletion of Tor2A in a TorA/B/3A-deficient background results in a stark increase of bleb formation, even though Tor2A does not respond to LAP1/LULL1 stimulation. The robustness of the observed phenotype in Torsin-deficient cells enables a structural analysis via electron microscopy tomography and a compositional analysis via immunogold labeling. Ubiquitin and nucleoporins were identified as distinctively localizing components of the omega-shaped bleb structure. These findings suggest a functional link between the Torsin/cofactor system and NE/nuclear pore complex biogenesis or homeostasis and establish a Torsin-deficient cell line as a valuable experimental platform with which to decipher Torsin function.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/genética , Chaperonas Moleculares/genética , Membrana Nuclear/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Chaperonas Moleculares/metabolismo , Membrana Nuclear/fisiologia , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo
7.
Rare Dis ; 4(1): e1241363, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27830109

RESUMO

Lamin B Receptor (LBR) is an inner nuclear membrane protein associated with the rare human diseases Pelger-Huët anomaly and Greenberg skeletal dysplasia. A new study has used CRISPR/Cas9-mediated genetic manipulations in a human cell system to determine that the molecular etiology of these previously poorly understood disorders is a defect in cholesterol synthesis due to loss of LBR-associated sterol C14 reductase activity. The study furthermore determined that disease-associated LBR point mutations reduce sterol C14 reductase activity by decreasing the affinity of LBR for the reducing agent NADPH. Moreover, two disease-associated LBR truncation mutants were found to be highly unstable at the protein level and are rapidly turned over by a novel nuclear membrane-based protein quality control pathway. Thus, truncated LBR variants can now be used as model substrates for further investigations of nuclear protein quality control to uncover possible implications for other disease-associated nuclear envelopathies.

8.
Elife ; 52016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27336722

RESUMO

Lamin B receptor (LBR) is a polytopic membrane protein residing in the inner nuclear membrane in association with the nuclear lamina. We demonstrate that human LBR is essential for cholesterol synthesis. LBR mutant derivatives implicated in Greenberg skeletal dysplasia or Pelger-Huët anomaly fail to rescue the cholesterol auxotrophy of a LBR-deficient human cell line, consistent with a loss-of-function mechanism for these congenital disorders. These disease-causing variants fall into two classes: point mutations in the sterol reductase domain perturb enzymatic activity by reducing the affinity for the essential cofactor NADPH, while LBR truncations render the mutant protein metabolically unstable, leading to its rapid degradation at the inner nuclear membrane. Thus, metabolically unstable LBR variants may serve as long-sought-after model substrates enabling previously impossible investigations of poorly understood protein turnover mechanisms at the inner nuclear membrane of higher eukaryotes.


Assuntos
Colesterol/metabolismo , Mutação , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Células Cultivadas , Humanos , Osteocondrodisplasias/fisiopatologia , Anomalia de Pelger-Huët/fisiopatologia , Receptor de Lamina B
9.
J Biol Chem ; 291(18): 9469-81, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-26953341

RESUMO

Torsin ATPases are the only representatives of the AAA+ ATPase family that reside in the lumen of the endoplasmic reticulum (ER) and nuclear envelope. Two of these, TorsinA and TorsinB, are anchored to the ER membrane by virtue of an N-terminal hydrophobic domain. Here we demonstrate that the imposition of ER stress leads to a proteolytic cleavage event that selectively removes the hydrophobic domain from the AAA+ domain of TorsinA, which retains catalytic activity. Both the pharmacological inhibition profile and the identified cleavage site between two juxtaposed cysteine residues are distinct from those of presently known proteases, suggesting that a hitherto uncharacterized, membrane-associated protease accounts for TorsinA processing. This processing occurs not only in stress-exposed cell lines but also in primary cells from distinct organisms including stimulated B cells, indicating that Torsin conversion in response to physiologically relevant stimuli is an evolutionarily conserved process. By establishing 5-nitroisatin as a cell-permeable inhibitor for Torsin processing, we provide the methodological framework for interfering with Torsin processing in a wide range of primary cells without the need for genetic manipulation.


Assuntos
Linfócitos B/metabolismo , Membrana Celular/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/metabolismo , Ativação Linfocitária/fisiologia , Chaperonas Moleculares/metabolismo , Proteólise , Linfócitos B/citologia , Membrana Celular/genética , Retículo Endoplasmático/genética , Células HEK293 , Células HeLa , Humanos , Chaperonas Moleculares/genética , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia
10.
Curr Opin Cell Biol ; 40: 1-7, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26803745

RESUMO

Torsin ATPases are the only members of the AAA+ ATPase family that localize to the endoplasmic reticulum and contiguous perinuclear space. Accordingly, they are well positioned to perform essential work in these compartments, but their precise functions remain elusive. Recent studies have deciphered an unusual ATPase activation mechanism relying on Torsin-associated transmembrane cofactors, LAP1 or LULL1. These findings profoundly change our molecular view of the Torsin machinery and rationalize several human mutations in TorsinA or LAP1 leading to congenital disorders, symptoms of which have recently been recapitulated in mouse models. Here, we review these recent advances in the Torsin field and discuss the most pressing questions in relation to nuclear envelope dynamics.


Assuntos
Adenosina Trifosfatases/metabolismo , Distonia/genética , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/metabolismo , Animais , Modelos Animais de Doenças , Distonia/enzimologia , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSC70/genética , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutação , Membrana Nuclear/metabolismo
11.
Proc Natl Acad Sci U S A ; 111(45): E4822-31, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25352667

RESUMO

Torsins are membrane-associated ATPases whose activity is dependent on two activating cofactors, lamina-associated polypeptide 1 (LAP1) and luminal domain-like LAP1 (LULL1). The mechanism by which these cofactors regulate Torsin activity has so far remained elusive. In this study, we identify a conserved domain in these activators that is predicted to adopt a fold resembling an AAA+ (ATPase associated with a variety of cellular activities) domain. Within these domains, a strictly conserved Arg residue present in both activating cofactors, but notably missing in Torsins, aligns with a key catalytic Arg found in AAA+ proteins. We demonstrate that cofactors and Torsins associate to form heterooligomeric assemblies with a defined Torsin-activator interface. In this arrangement, the highly conserved Arg residue present in either cofactor comes into close proximity with the nucleotide bound in the neighboring Torsin subunit. Because this invariant Arg is strictly required to stimulate Torsin ATPase activity but is dispensable for Torsin binding, we propose that LAP1 and LULL1 regulate Torsin ATPase activity through an active site complementation mechanism.


Assuntos
Adenosina Trifosfatases , Proteínas de Transporte , Proteínas de Choque Térmico HSC70 , Proteínas de Membrana , Chaperonas Moleculares , Complexos Multiproteicos , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Arginina/química , Arginina/genética , Arginina/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Domínio Catalítico , Coenzimas/química , Coenzimas/genética , Coenzimas/metabolismo , Ativação Enzimática/fisiologia , Células HEK293 , Proteínas de Choque Térmico HSC70/química , Proteínas de Choque Térmico HSC70/genética , Proteínas de Choque Térmico HSC70/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
12.
J Biol Chem ; 289(1): 552-64, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24275647

RESUMO

Torsins are membrane-tethered AAA+ ATPases residing in the nuclear envelope (NE) and endoplasmic reticulum (ER). Here, we show that the induction of a conditional, dominant-negative TorsinB variant provokes a profound reorganization of the endomembrane system into foci containing double membrane structures that are derived from the ER. These double-membrane sinusoidal structures are formed by compressing the ER lumen to a constant width of 15 nm, and are highly enriched in the ATPase activator LULL1. Further, we define an important role for a highly conserved aromatic motif at the C terminus of Torsins. Mutations in this motif perturb LULL1 binding, reduce ATPase activity, and profoundly limit the induction of sinusoidal structures.


Assuntos
Adenosina Trifosfatases/metabolismo , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/metabolismo , Membranas Intracelulares/enzimologia , Chaperonas Moleculares/metabolismo , Adenosina Trifosfatases/genética , Motivos de Aminoácidos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/genética , Mutação
13.
Proc Natl Acad Sci U S A ; 110(17): E1545-54, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23569223

RESUMO

TorsinA is a membrane-associated AAA+ (ATPases associated with a variety of cellular activities) ATPase implicated in primary dystonia, an autosomal-dominant movement disorder. We reconstituted TorsinA and its cofactors in vitro and show that TorsinA does not display ATPase activity in isolation; ATP hydrolysis is induced upon association with LAP1 and LULL1, type II transmembrane proteins residing in the nuclear envelope and endoplasmic reticulum. This interaction requires TorsinA to be in the ATP-bound state, and can be attributed to the luminal domains of LAP1 and LULL1. This ATPase activator function controls the activities of other members of the Torsin family in distinct fashion, leading to an acceleration of the hydrolysis step by up to two orders of magnitude. The dystonia-causing mutant of TorsinA is defective in this activation mechanism, suggesting a loss-of-function mechanism for this congenital disorder.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/metabolismo , Distonia Muscular Deformante/genética , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Cromatografia em Gel , Clonagem Molecular , Distonia Muscular Deformante/metabolismo , Células HEK293 , Células HeLa , Humanos , Hidrólise , Immunoblotting , Imunoprecipitação , Chaperonas Moleculares/genética
14.
PLoS Biol ; 8(3): e1000605, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21468303

RESUMO

Ubiquitin-dependent processes control much of cellular physiology. We show that expression of a highly active, Epstein-Barr virus-derived deubiquitylating enzyme (EBV-DUB) blocks proteasomal degradation of cytosolic and ER-derived proteins by preemptive removal of ubiquitin from proteasome substrates, a treatment less toxic than the use of proteasome inhibitors. Recognition of misfolded proteins in the ER lumen, their dislocation to the cytosol, and degradation are usually tightly coupled but can be uncoupled by the EBV-DUB: a misfolded glycoprotein that originates in the ER accumulates in association with cytosolic chaperones as a deglycosylated intermediate. Our data underscore the necessity of a DUB activity for completion of the dislocation reaction and provide a new means of inhibition of proteasomal proteolysis with reduced cytotoxicity.


Assuntos
Herpesvirus Humano 4/enzimologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais , Ubiquitina/metabolismo , Proteínas Virais/metabolismo , Biocatálise , Linhagem Celular , Retículo Endoplasmático/metabolismo , Glicoproteínas/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Processamento de Proteína Pós-Traducional , Transporte Proteico , Especificidade por Substrato
16.
Mol Cell ; 36(1): 28-38, 2009 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-19818707

RESUMO

YOD1 is a highly conserved deubiquitinating enzyme of the ovarian tumor (otubain) family, whose function has yet to be assigned in mammalian cells. YOD1 is a constituent of a multiprotein complex with p97 as its nucleus, suggesting a functional link to a pathway responsible for the dislocation of misfolded proteins from the endoplasmic reticulum. Expression of a YOD1 variant deprived of its deubiquitinating activity imposes a halt on the dislocation reaction, as judged by the stabilization of various dislocation substrates. Accordingly, we observe an increase in polyubiquitinated dislocation intermediates in association with p97 in the cytosol. This dominant-negative effect is dependent on the UBX and Zinc finger domains, appended to the N and C terminus of the catalytic otubain core domain, respectively. The assignment of a p97-associated ubiquitin processing function to YOD1 adds to our understanding of p97's role in the dislocation process.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Endopeptidases/fisiologia , Retículo Endoplasmático/metabolismo , Dobramento de Proteína , Transporte Proteico/fisiologia , Tioléster Hidrolases/fisiologia , Adenosina Trifosfatases/genética , Proteínas de Transporte/metabolismo , Domínio Catalítico/fisiologia , Proteínas de Ciclo Celular/genética , Linhagem Celular , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação Puntual/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica/fisiologia , Domínios e Motivos de Interação entre Proteínas/fisiologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Transfecção , Ubiquitina/metabolismo , Ubiquitinação/genética , Proteína com Valosina , Dedos de Zinco/fisiologia , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo
17.
J Virol ; 81(19): 10300-9, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17634221

RESUMO

All herpesviruses contain a ubiquitin (Ub)-specific cysteine protease domain embedded within their large tegument protein, based on homology with the corresponding sequences of UL36 from herpes simplex virus type 1 and M48 from murine cytomegalovirus. This type of activity has yet to be demonstrated for cells infected with a gammaherpesvirus. By activity-based profiling, we show that the large tegument protein of murine gammaherpesvirus (MHV-68) ORF64 (273 kDa) is a functional deubiquitinating protease, as assessed by tandem mass spectrometry of adducts in extracts from MHV-68-infected cells that had been labeled with ubiquitin vinylmethylester, a ubiquitin-based active site-directed probe. The recombinantly expressed amino-terminal segment of ORF64 displays deubiquitinating activity toward Ub C-terminal 7-amido-4-methylcoumarin in vitro. The findings reported here for MHV-68 ORF64 extend those made for the alpha- and betaherpesvirus families and are consistent with an important, conserved enzymatic function of the tegument protein.


Assuntos
Endopeptidases/metabolismo , Gammaherpesvirinae/enzimologia , Infecções por Herpesviridae/virologia , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Endopeptidases/química , Endopeptidases/genética , Fibroblastos/virologia , Gammaherpesvirinae/genética , Camundongos , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Filogenia , Conformação Proteica , Especificidade por Substrato , Proteases Específicas de Ubiquitina , Proteínas Virais/química , Proteínas Virais/genética
18.
Mol Cell ; 25(5): 677-87, 2007 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-17349955

RESUMO

All members of the herpesviridae contain within their large tegument protein a cysteine protease module that displays deubiquitinating activity. We report the crystal structure of the cysteine protease domain of murine cytomegalovirus M48 (M48(USP)) in a complex with a ubiquitin (Ub)-based suicide substrate. M48(USP) adopts a papain-like fold, with the active-site cysteine forming a thioether linkage to the suicide substrate. The Ub core participates in an extensive hydrophobic interaction with an exposed beta hairpin loop of M48(USP). This Ub binding mode contributes to Ub specificity and is distinct from that observed in other deubiquitinating enzymes. Both the arrangement of active-site residues and the architecture of the interface with Ub lead us to classify this domain as the founding member of a previously unknown class of deubiquitinating enzymes.


Assuntos
Cisteína Endopeptidases/química , Muromegalovirus/enzimologia , Ubiquitina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Catálise , Cristalografia por Raios X , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Dobramento de Proteína , Estrutura Secundária de Proteína , Especificidade por Substrato
19.
Biol Chem ; 386(8): 739-44, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16201868

RESUMO

Cell survival under severe thermal stress requires the activity of a bi-chaperone system, consisting of the ring-forming AAA+ chaperone ClpB (Hsp104) and the DnaK (Hsp70) chaperone system, which acts to solubilize and reactivate aggregated proteins. Recent studies have provided novel insight into the mechanism of protein disaggregation, demonstrating that ClpB/Hsp104 extracts unfolded polypeptides from an aggregate by threading them through its central pore. This translocation activity is necessary but not sufficient for aggregate solubilization. In addition, the middle (M) domain of ClpB and the DnaK system have essential roles, possibly by providing an unfolding force, which facilitates the extraction of misfolded proteins from aggregates.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Renaturação Proteica , Endopeptidase Clp , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Cinética , Chaperonas Moleculares/genética , Conformação Proteica
20.
FEBS Lett ; 578(3): 351-6, 2004 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-15589844

RESUMO

The AAA+ chaperone ClpB solubilizes in cooperation with the DnaK chaperone system aggregated proteins. The mechanistic features of the protein disaggregation process are poorly understood. Here, we investigated the mechanism of ClpB/DnaK-dependent solubilization of heat-aggregated malate dehydrogenase (MDH) by following characteristics of MDH aggregates during the disaggregation reaction. We demonstrate that disaggregation is achieved by the continuous extraction of unfolded MDH molecules and not by fragmentation of large MDH aggregates. These findings support a ClpB-dependent threading mechanism as an integral part of the disaggregation reaction.


Assuntos
Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo , Peptídeos/metabolismo , Dobramento de Proteína , Adenosina Trifosfatases/metabolismo , Chaperonina 60/metabolismo , Dimerização , Proteínas de Choque Térmico/química , Concentração de Íons de Hidrogênio , Luz , Malato Desidrogenase/análise , Malato Desidrogenase/química , Malato Desidrogenase/metabolismo , Tamanho da Partícula , Ligação Proteica , Desnaturação Proteica , Espalhamento de Radiação , Solubilidade , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA