Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Insects ; 15(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38667419

RESUMO

The polyphagous fall armyworm (FAW), Spodoptera frugiperda, has become an invasive pest worldwide in recent years. To develop maize germplasm with multiple pest resistance and understand genetic inheritance, 12 experimental hybrids (six pairs of reciprocal crosses) with diverse genetic backgrounds and four commercial checks were examined for FAW resistance in 2013 and 2014. The experiment utilized a randomized complete block design with four replications as the block factor. FAW injury on maize plants was assessed at 7 and 14 d after the artificial infestation at the V6 stage, and predatory arthropod taxa and abundance on maize seedlings were recorded 7 d after the infestation. Spodoptera frugiperda resistance varied significantly among the 16 hybrids. Two reciprocal crosses ('FAW1430' × 'Oh43' and 'CML333' × 'NC358') showed the least FAW injury. Eleven arthropod predators [i.e., six coleopterans, three hemipterans, earwigs (dermapterans), and spiders (or arachnids)] were also recorded; the two most common predators were the pink spotted ladybeetle, Coleomegilla maculata, and the insidious flower (or minute pirate) bug, Orius spp. Predator abundance was not correlated to FAW injury but varied greatly between 2013 and 2014. Principal component analysis demonstrated that, when compared with FAW resistant (or Bt-transgenic) checks ('DKC69-71', 'DKC67-88', and 'P31P42'), five pairs of the reciprocal crosses had moderate FAW resistance, whereas a pair of reciprocal crosses ('NC350' × 'NC358' and NC358 × NC350) showed the same FAW susceptibility as the non-Bt susceptible check 'DKC69-72'. Both parents contributed similarly to FAW resistance, or no maternal/cytoplasmic effect was detected in the experimental hybrids.

2.
Plants (Basel) ; 12(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36903970

RESUMO

In maize (Zea mays), fungal-elicited immune responses include the accumulation of terpene synthase (TPS) and cytochrome P450 monooxygenases (CYP) enzymes resulting in complex antibiotic arrays of sesquiterpenoids and diterpenoids, including α/ß-selinene derivatives, zealexins, kauralexins and dolabralexins. To uncover additional antibiotic families, we conducted metabolic profiling of elicited stem tissues in mapping populations, which included B73 × M162W recombinant inbred lines and the Goodman diversity panel. Five candidate sesquiterpenoids associated with a chromosome 1 locus spanning the location of ZmTPS27 and ZmTPS8. Heterologous enzyme co-expression studies of ZmTPS27 in Nicotiana benthamiana resulted in geraniol production while ZmTPS8 yielded α-copaene, δ-cadinene and sesquiterpene alcohols consistent with epi-cubebol, cubebol, copan-3-ol and copaborneol matching the association mapping efforts. ZmTPS8 is an established multiproduct α-copaene synthase; however, ZmTPS8-derived sesquiterpene alcohols are rarely encountered in maize tissues. A genome wide association study further linked an unknown sesquiterpene acid to ZmTPS8 and combined ZmTPS8-ZmCYP71Z19 heterologous enzyme co-expression studies yielded the same product. To consider defensive roles for ZmTPS8, in vitro bioassays with cubebol demonstrated significant antifungal activity against both Fusarium graminearum and Aspergillus parasiticus. As a genetically variable biochemical trait, ZmTPS8 contributes to the cocktail of terpenoid antibiotics present following complex interactions between wounding and fungal elicitation.

3.
Plant J ; 110(5): 1255-1270, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35315556

RESUMO

Chewing herbivores activate plant defense responses through a combination of mechanical wounding and elicitation by herbivore-associated molecular patterns (HAMPs). HAMPs are wound response amplifiers; however, specific defense outputs may also exist that strictly require HAMP-mediated defense signaling. To investigate HAMP-mediated signaling and defense responses, we characterized cowpea (Vigna unguiculata) transcriptome changes following elicitation by inceptin, a peptide HAMP common in Lepidoptera larvae oral secretions. Following inceptin treatment, we observed large-scale reprogramming of the transcriptome consistent with three different response categories: (i) amplification of mechanical wound responses, (ii) temporal extension through accelerated or prolonged responses, and (iii) examples of inceptin-specific elicitation and suppression. At both early and late timepoints, namely 1 and 6 h, large sets of transcripts specifically accumulated following inceptin elicitation. Further early inceptin-regulated transcripts were classified as reversing changes induced by wounding alone. Within key signaling- and defense-related gene families, inceptin-elicited responses included target subsets of wound-induced transcripts. Transcripts displaying the largest inceptin-elicited fold changes included transcripts encoding terpene synthases (TPSs) and peroxidases (POXs) that correspond with induced volatile production and increased POX activity in cowpea. Characterization of inceptin-elicited cowpea defenses via heterologous expression in Nicotiana benthamiana demonstrated that specific cowpea TPSs and POXs were able to confer terpene emission and the reduced growth of beet armyworm (Spodoptera exigua) herbivores, respectively. Collectively, our present findings in cowpea support a model where HAMP elicitation both amplifies concurrent wound responses and specifically contributes to the activation of selective outputs associated with direct and indirect antiherbivore defenses.


Assuntos
Fabaceae , Vigna , Animais , Fabaceae/genética , Regulação da Expressão Gênica de Plantas , Herbivoria/fisiologia , Plantas , Spodoptera , Terpenos/metabolismo , Vigna/genética
5.
Planta ; 255(2): 37, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35020066

RESUMO

MAIN CONCLUSION: A WRKY transcription factor identified through forward genetics is associated with sorghum resistance to the sugarcane aphid and through heterologous expression reduces aphid populations in multiple plant species. Crop plant resistance to insect pests is based on genetically encoded traits which often display variability across diverse germplasm. In a comparatively recent event, a predominant sugarcane aphid (SCA: Melanaphis sacchari) biotype has become a significant agronomic pest of grain sorghum (Sorghum bicolor). To uncover candidate genes underlying SCA resistance, we used a forward genetics approach combining the genetic diversity present in the Sorghum Association Panel (SAP) and the Bioenergy Association Panel (BAP) for a genome-wide association study, employing an established SCA damage rating. One major association was found on Chromosome 9 within the WRKY transcription factor 86 (SbWRKY86). Transcripts encoding SbWRKY86 were previously identified as upregulated in SCA-resistant germplasm and the syntenic ortholog in maize accumulates following Rhopalosiphum maidis infestation. Analyses of SbWRKY86 transcripts displayed patterns of increased SCA-elicited accumulation in additional SCA-resistant sorghum lines. Heterologous expression of SbWRKY86 in both tobacco (Nicotiana benthamiana) and Arabidopsis resulted in reduced population growth of green peach aphid (Myzus persicae). Comparative RNA-Seq analyses of Arabidopsis lines expressing 35S:SbWRKY86-YFP identified changes in expression for a small network of genes associated with carbon-nitrogen metabolism and callose deposition, both contributing factors to defense against aphids. As a test of altered plant responses, 35S:SbWRKY86-YFP Arabidopsis lines were activated using the flagellin epitope elicitor, flg22, and displayed significant increases in callose deposition. Our findings indicate that both heterologous and increased native expression of the transcription factor SbWRKY86 contributes to reduced aphid levels in diverse plant models.


Assuntos
Afídeos , Sorghum , Animais , Estudo de Associação Genômica Ampla , Sorghum/genética , Fatores de Transcrição/genética
6.
Plant J ; 108(5): 1295-1316, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34564909

RESUMO

Crop damage by herbivorous insects remains a significant contributor to annual yield reductions. Following attack, maize (Zea mays) responds to herbivore-associated molecular patterns (HAMPs) and damage-associated molecular patterns (DAMPs), activating dynamic direct and indirect antiherbivore defense responses. To define underlying signaling processes, comparative analyses between plant elicitor peptide (Pep) DAMPs and fatty acid-amino acid conjugate (FAC) HAMPs were conducted. RNA sequencing analysis of early transcriptional changes following Pep and FAC treatments revealed quantitative differences in the strength of response yet a high degree of qualitative similarity, providing evidence for shared signaling pathways. In further comparisons of FAC and Pep responses across diverse maize inbred lines, we identified Mo17 as part of a small subset of lines displaying selective FAC insensitivity. Genetic mapping for FAC sensitivity using the intermated B73 × Mo17 population identified a single locus on chromosome 4 associated with FAC sensitivity. Pursuit of multiple fine-mapping approaches further narrowed the locus to 19 candidate genes. The top candidate gene identified, termed FAC SENSITIVITY ASSOCIATED (ZmFACS), encodes a leucine-rich repeat receptor-like kinase (LRR-RLK) that belongs to the same family as a rice (Oryza sativa) receptor gene previously associated with the activation of induced responses to diverse Lepidoptera. Consistent with reduced sensitivity, ZmFACS expression was significantly lower in Mo17 as compared to B73. Transient heterologous expression of ZmFACS in Nicotiana benthamiana resulted in a significantly increased FAC-elicited response. Together, our results provide useful resources for studying early elicitor-induced antiherbivore responses in maize and approaches to discover gene candidates underlying HAMP sensitivity in grain crops.


Assuntos
Regulação da Expressão Gênica de Plantas , Lepidópteros/fisiologia , Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais , Zea mays/genética , Animais , Mapeamento Cromossômico , Loci Gênicos/genética , Herbivoria , Peptídeos/genética , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Nicotiana/genética , Nicotiana/fisiologia , Zea mays/fisiologia
7.
Proc Natl Acad Sci U S A ; 117(49): 31510-31518, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229576

RESUMO

Herbivory is fundamental to the regulation of both global food webs and the extent of agricultural crop losses. Induced plant responses to herbivores promote resistance and often involve the perception of specific herbivore-associated molecular patterns (HAMPs); however, precisely defined receptors and elicitors associated with herbivore recognition remain elusive. Here, we show that a receptor confers signaling and defense outputs in response to a defined HAMP common in caterpillar oral secretions (OS). Staple food crops, including cowpea (Vigna unguiculata) and common bean (Phaseolus vulgaris), specifically respond to OS via recognition of proteolytic fragments of chloroplastic ATP synthase, termed inceptins. Using forward-genetic mapping of inceptin-induced plant responses, we identified a corresponding leucine-rich repeat receptor, termed INR, specific to select legume species and sufficient to confer inceptin-induced responses and enhanced defense against armyworms (Spodoptera exigua) in tobacco. Our results support the role of plant immune receptors in the perception of chewing herbivores and defense.


Assuntos
Herbivoria/fisiologia , Moléculas com Motivos Associados a Patógenos/metabolismo , Imunidade Vegetal , Proteínas de Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Plantas Geneticamente Modificadas , Spodoptera/fisiologia , Nicotiana/imunologia , Vigna/imunologia
8.
J Chem Ecol ; 46(3): 330-343, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31989490

RESUMO

Plants perceive insect herbivores via a sophisticated surveillance system that detects a range of alarm signals, including herbivore-associated molecular patterns (HAMPs). Fatty acid-amino acid conjugates (FACs) are HAMPs present in oral secretions (OS) of lepidopteran larvae that induce defense responses in many plant species. In contrast to eggplant (Solanum melongena), tomato (S. lycopersicum) does not respond to FACs present in OS from Manduca sexta (Lepidoptera). Since both plants are found in the same genus, we tested whether loss of sensitivity to FACs in tomato may be a domestication effect. Using highly sensitive MAP kinase (MAPK) phosphorylation assays, we demonstrate that four wild tomato species and the closely related potato (S. tuberosum) do not respond to the FACs N-linolenoyl-L-glutamine and N-linolenoyl-L-glutamic acid, excluding a domestication effect. Among other genera within the Solanaceae, we found that bell pepper (Capsicum annuum) is responsive to FACs, while there is a differential responsiveness to FACs among tobacco (Nicotiana) species, ranging from strong responsiveness in N. benthamiana to no responsiveness in N. knightiana. The Petunia lineage is one of the oldest lineages within the Solanaceae and P. hybrida was responsive to FACs. Collectively, we demonstrate that plant responsiveness to FACs does not follow simple phylogenetic relationships in the family Solanaceae. Instead, sensitivity to FACs is a dynamic ancestral trait present in monocots and eudicots that was repeatedly lost during the evolution of Solanaceae species. Although tomato is insensitive to FACs, we found that other unidentified factors in M. sexta OS induce defenses in tomato.


Assuntos
Aminoácidos/metabolismo , Antibiose , Ácidos Graxos/metabolismo , Herbivoria , Manduca/fisiologia , Solanaceae/fisiologia , Animais , Larva , Especificidade da Espécie
9.
New Phytol ; 221(4): 2096-2111, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30289553

RESUMO

The production and regulation of defensive specialized metabolites play a central role in pathogen resistance in maize (Zea mays) and other plants. Therefore, identification of genes involved in plant specialized metabolism can contribute to improved disease resistance. We used comparative metabolomics to identify previously unknown antifungal metabolites in maize seedling roots, and investigated the genetic and physiological mechanisms underlying their natural variation using quantitative trait locus mapping and comparative transcriptomics approaches. Two maize metabolites, smilaside A (3,6-diferuloyl-3',6'-diacetylsucrose) and smiglaside C (3,6-diferuloyl-2',3',6'-triacetylsucrose), were identified that could contribute to maize resistance against Fusarium graminearum and other fungal pathogens. Elevated expression of an ethylene signaling gene, ETHYLENE INSENSITIVE 2 (ZmEIN2), co-segregated with a decreased smilaside A : smiglaside C ratio. Pharmacological and genetic manipulation of ethylene availability and sensitivity in vivo indicated that, whereas ethylene was required for the production of both metabolites, the smilaside A : smiglaside C ratio was negatively regulated by ethylene sensitivity. This ratio, rather than the absolute abundance of these two metabolites, was important for maize seedling root defense against F. graminearum. Ethylene signaling regulates the relative abundance of the two F. graminearum-resistance-related metabolites and affects resistance against F. graminearum in maize seedling roots.


Assuntos
Resistência à Doença , Etilenos/metabolismo , Fusarium/fisiologia , Raízes de Plantas/microbiologia , Plântula/microbiologia , Transdução de Sinais , Sacarose/metabolismo , Zea mays/microbiologia , Acetilação , Antifúngicos/farmacologia , Endogamia , Metaboloma , Modelos Biológicos , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Locos de Características Quantitativas/genética , Zea mays/metabolismo
10.
Plant Signal Behav ; 11(2): e1120395, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26669723

RESUMO

Recently we investigated the function of the 9-lipoxygenase (LOX) derived cyclopentenones 10-oxo-11-phytoenoic acid (10-OPEA) and 10-oxo-11,15-phytodienoic acid (10-OPDA) and identified their C-14 and C-12 derivatives. 10-OPEA accumulation is elicited by fungal and insect attack and acts as a strong inhibitor of microbial and herbivore growth. Although structurally similar, comparative analyses between 10-OPEA and its 13-LOX analog 12-oxo-phytodienoic acid (12-OPDA) demonstrate specificity in transcript accumulation linked to detoxification, secondary metabolism, jasmonate regulation, and protease inhibition. As a potent cell death signal, 10-OPEA activates cysteine protease activity leading to ion leakage and apoptotic-like DNA fragmentation. In this study we further elucidate the distribution, abundance, and functional roles of 10-OPEA, 10-OPDA, and 12-OPDA, in diverse organs under pathogen- and insect-related stress.


Assuntos
Ciclopentanos/metabolismo , Estresse Fisiológico , Zea mays/fisiologia , Vias Biossintéticas , Ciclopentanos/química , Herbivoria , Lipoxigenases/química , Lipoxigenases/metabolismo , Modelos Biológicos , Transdução de Sinais , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
11.
Proc Natl Acad Sci U S A ; 112(36): 11407-12, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26305953

RESUMO

Plant damage promotes the interaction of lipoxygenases (LOXs) with fatty acids yielding 9-hydroperoxides, 13-hydroperoxides, and complex arrays of oxylipins. The action of 13-LOX on linolenic acid enables production of 12-oxo-phytodienoic acid (12-OPDA) and its downstream products, termed "jasmonates." As signals, jasmonates have related yet distinct roles in the regulation of plant resistance against insect and pathogen attack. A similar pathway involving 9-LOX activity on linolenic and linoleic acid leads to the 12-OPDA positional isomer, 10-oxo-11-phytodienoic acid (10-OPDA) and 10-oxo-11-phytoenoic acid (10-OPEA), respectively; however, physiological roles for 9-LOX cyclopentenones have remained unclear. In developing maize (Zea mays) leaves, southern leaf blight (Cochliobolus heterostrophus) infection results in dying necrotic tissue and the localized accumulation of 10-OPEA, 10-OPDA, and a series of related 14- and 12-carbon metabolites, collectively termed "death acids." 10-OPEA accumulation becomes wound inducible within fungal-infected tissues and at physiologically relevant concentrations acts as a phytoalexin by suppressing the growth of fungi and herbivores including Aspergillus flavus, Fusarium verticillioides, and Helicoverpa zea. Unlike previously established maize phytoalexins, 10-OPEA and 10-OPDA display significant phytotoxicity. Both 12-OPDA and 10-OPEA promote the transcription of defense genes encoding glutathione S transferases, cytochrome P450s, and pathogenesis-related proteins. In contrast, 10-OPEA only weakly promotes the accumulation of multiple protease inhibitor transcripts. Consistent with a role in dying tissue, 10-OPEA application promotes cysteine protease activation and cell death, which is inhibited by overexpression of the cysteine protease inhibitor maize cystatin-9. Unlike jasmonates, functions for 10-OPEA and associated death acids are consistent with specialized roles in local defense reactions.


Assuntos
Ciclopentanos/metabolismo , Lipoxigenase/metabolismo , Proteínas de Plantas/metabolismo , Sesquiterpenos/metabolismo , Zea mays/metabolismo , Ascomicetos/fisiologia , Ciclopentanos/química , Ciclopentanos/farmacologia , Cistatinas/genética , Cistatinas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Immunoblotting , Lipoxigenase/genética , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Oxilipinas/química , Oxilipinas/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Zea mays/genética , Zea mays/microbiologia , Fitoalexinas
12.
Mol Plant Microbe Interact ; 27(11): 1263-76, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25122482

RESUMO

Fusarium verticillioides is a major limiting factor for maize production due to ear and stalk rot and the contamination of seed with the carcinogenic mycotoxin fumonisin. While lipoxygenase (LOX)-derived oxylipins have been implicated in defense against diverse pathogens, their function in maize resistance against F. verticillioides is poorly understood. Here, we functionally characterized a novel maize 9-LOX gene, ZmLOX12. This gene is distantly related to known dicot LOX genes, with closest homologs found exclusively in other monocot species. ZmLOX12 is predominantly expressed in mesocotyls in which it is strongly induced in response to F. verticillioides infection. The Mutator transposon-insertional lox12-1 mutant is more susceptible to F. verticillioides colonization of mesocotyls, stalks, and kernels. The infected mutant kernels accumulate a significantly greater amount of the mycotoxin fumonisin. Reduced resistance to the pathogen is accompanied by diminished levels of the jasmonic acid (JA) precursor 12-oxo phytodienoic acid, JA-isoleucine, and expression of jasmonate-biosynthetic genes. Supporting the strong defense role of jasmonates, the JA-deficient opr7 opr8 double mutant displayed complete lack of immunity to F. verticillioides. Unexpectedly, the more susceptible lox12 mutant accumulated higher levels of kauralexins, suggesting that F. verticillioides is tolerant to this group of antimicrobial phytoalexins. This study demonstrates that this unique monocot-specific 9-LOX plays a key role in defense against F. verticillioides in diverse maize tissues and provides genetic evidence that JA is the major defense hormone against this pathogen.


Assuntos
Ciclopentanos/metabolismo , Fusarium/fisiologia , Lipoxigenase/metabolismo , Oxilipinas/metabolismo , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/metabolismo , Zea mays/enzimologia , Sequência de Aminoácidos , Fumonisinas/metabolismo , Fusarium/patogenicidade , Lipoxigenase/genética , Dados de Sequência Molecular , Mutagênese Insercional , Especificidade de Órgãos , Doenças das Plantas/microbiologia , Imunidade Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plântula/enzimologia , Plântula/genética , Plântula/imunologia , Plântula/microbiologia , Sementes/enzimologia , Sementes/genética , Sementes/imunologia , Sementes/microbiologia , Alinhamento de Sequência , Análise de Sequência de DNA , Zea mays/genética , Zea mays/imunologia , Zea mays/microbiologia
13.
Plant Physiol ; 160(3): 1468-78, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23008466

RESUMO

Plants respond to insect herbivory through the production of biochemicals that function as either direct defenses or indirect defenses via the attraction of natural enemies. While attack by closely related insect pests can result in distinctive levels of induced plant defenses, precise biochemical mechanisms responsible for differing responses remain largely unknown. Cowpea (Vigna unguiculata) responds to Fall armyworm (Spodoptera frugiperda) herbivory through the detection of fragments of chloroplastic ATP synthase γ-subunit proteins, termed inceptin-related peptides, present in larval oral secretions (OS). In contrast to generalists like Fall armyworm, OS of the legume-specializing velvetbean caterpillar (VBC; Anticarsia gemmatalis) do not elicit ethylene production and demonstrate significantly lower induced volatile emission in direct herbivory comparisons. Unlike all other Lepidoptera OS examined, which preferentially contain inceptin (Vu-In; +ICDINGVCVDA-), VBC OS contain predominantly a C-terminal truncated peptide, Vu-In(-A) (+ICDINGVCVD-). Vu-In(-A) is both inactive and functions as a potent naturally occurring antagonist of Vu-In-induced responses. To block antagonist production, amino acid substitutions at the C terminus were screened for differences in VBC gut proteolysis. A valine-substituted peptide (Vu-In(ΔV); +ICDINGVCVDV-) retaining full elicitor activity was found to accumulate in VBC OS. Compared with the native polypeptide, VBC that previously ingested 500 pmol of the valine-modified chloroplastic ATP synthase γ-subunit precursor elicited significantly stronger plant responses in herbivory assays. We demonstrate that a specialist herbivore minimizes the activation of defenses by converting an elicitor into an antagonist effector and identify an amino acid substitution that recovers these induced plant defenses to a level observed with generalist herbivores.


Assuntos
Substituição de Aminoácidos/genética , Fabaceae/imunologia , Fabaceae/parasitologia , Herbivoria/fisiologia , Mariposas/fisiologia , Sequência de Aminoácidos , Animais , ATPases de Cloroplastos Translocadoras de Prótons/metabolismo , Fabaceae/efeitos dos fármacos , Herbivoria/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/fisiologia , Modelos Biológicos , Dados de Sequência Molecular , Mariposas/efeitos dos fármacos , Mariposas/enzimologia , Peptídeos/química , Peptídeos/farmacologia , Spodoptera/efeitos dos fármacos
14.
Plant J ; 72(6): 882-93, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22709376

RESUMO

Diverse pathogens secrete effector proteins into plant cells to manipulate host cellular processes. Oomycete pathogens contain large complements of predicted effector genes defined by an RXLR host cell entry motif. The genome of Hyaloperonospora arabidopsidis (Hpa, downy mildew of Arabidopsis) contains at least 134 candidate RXLR effector genes. Only a small subset of these genes is conserved in related oomycetes from the Phytophthora genus. Here, we describe a comparative functional characterization of the Hpa RXLR effector gene HaRxL96 and a homologous gene, PsAvh163, from the Glycine max (soybean) pathogen Phytophthora sojae. HaRxL96 and PsAvh163 are induced during the early stages of infection and carry a functional RXLR motif that is sufficient for protein uptake into plant cells. Both effectors can suppress immune responses in soybean. HaRxL96 suppresses immunity in Nicotiana benthamiana, whereas PsAvh163 induces an HR-like cell death response in Nicotiana that is dependent on RAR1 and Hsp90.1. Transgenic Arabidopsis plants expressing HaRxL96 or PsAvh163 exhibit elevated susceptibility to virulent and avirulent Hpa, as well as decreased callose deposition in response to non-pathogenic Pseudomonas syringae. Both effectors interfere with defense marker gene induction, but do not affect salicylic acid biosynthesis. Together, these experiments demonstrate that evolutionarily conserved effectors from different oomycete species can suppress immunity in plant species that are divergent from the source pathogen's host.


Assuntos
Glycine max/imunologia , Nicotiana/imunologia , Oomicetos/fisiologia , Doenças das Plantas/imunologia , Imunidade Vegetal , Proteínas/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Evolução Biológica , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glucanos/metabolismo , Interações Hospedeiro-Patógeno , Dados de Sequência Molecular , Phytophthora/fisiologia , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas , Estrutura Terciária de Proteína , Pseudomonas syringae/fisiologia , Alinhamento de Sequência , Glycine max/genética , Glycine max/microbiologia , Nicotiana/genética , Nicotiana/microbiologia , Transgenes
15.
Plant Cell ; 23(7): 2738-53, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21750236

RESUMO

Altering expression of transcription factors can be an effective means to coordinately modulate entire metabolic pathways in plants. It can also provide useful information concerning the identities of genes that constitute metabolic networks. Here, we used ectopic expression of a MYB transcription factor, Petunia hybrida ODORANT1, to alter Phe and phenylpropanoid metabolism in tomato (Solanum lycopersicum) fruits. Despite the importance of Phe and phenylpropanoids to plant and human health, the pathway for Phe synthesis has not been unambiguously determined. Microarray analysis of ripening fruits from transgenic and control plants permitted identification of a suite of coregulated genes involved in synthesis and further metabolism of Phe. The pattern of coregulated gene expression facilitated discovery of the tomato gene encoding prephenate aminotransferase, which converts prephenate to arogenate. The expression and biochemical data establish an arogenate pathway for Phe synthesis in tomato fruits. Metabolic profiling and ¹³C flux analysis of ripe fruits further revealed large increases in the levels of a specific subset of phenylpropanoid compounds. However, while increased levels of these human nutrition-related phenylpropanoids may be desirable, there were no increases in levels of Phe-derived flavor volatiles.


Assuntos
Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Fenilalanina/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Proto-Oncogênicas c-myb/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Aminoácidos Dicarboxílicos/química , Aminoácidos Dicarboxílicos/metabolismo , Ácidos Cicloexanocarboxílicos/química , Ácidos Cicloexanocarboxílicos/metabolismo , Cicloexenos/química , Cicloexenos/metabolismo , Frutas/química , Frutas/genética , Humanos , Solanum lycopersicum/química , Redes e Vias Metabólicas/genética , Análise em Microsséries , Dados de Sequência Molecular , Estrutura Molecular , Petunia/genética , Ácidos Fenilpirúvicos/química , Ácidos Fenilpirúvicos/metabolismo , Filogenia , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transaminases/classificação , Transaminases/genética , Transaminases/metabolismo , Tirosina/análogos & derivados , Tirosina/química , Tirosina/metabolismo , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo
16.
Plant Physiol ; 155(3): 1325-38, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21205619

RESUMO

ZmPep1 is a bioactive peptide encoded by a previously uncharacterized maize (Zea mays) gene, ZmPROPEP1. ZmPROPEP1 was identified by sequence similarity as an ortholog of the Arabidopsis (Arabidopsis thaliana) AtPROPEP1 gene, which encodes the precursor protein of elicitor peptide 1 (AtPep1). Together with its receptors, AtPEPR1 and AtPEPR2, AtPep1 functions to activate and amplify innate immune responses in Arabidopsis and enhances resistance to both Pythium irregulare and Pseudomonas syringae. Candidate orthologs to the AtPROPEP1 gene have been identified from a variety of crop species; however, prior to this study, activities of the respective peptides encoded by these orthologs were unknown. Expression of the ZmPROPEP1 gene is induced by fungal infection and treatment with jasmonic acid or ZmPep1. ZmPep1 activates de novo synthesis of the hormones jasmonic acid and ethylene and induces the expression of genes encoding the defense proteins endochitinase A, PR-4, PRms, and SerPIN. ZmPep1 also stimulates the expression of Benzoxazineless1, a gene required for the biosynthesis of benzoxazinoid defenses, and the accumulation of 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside in leaves. To ascertain whether ZmPep1-induced defenses affect resistance, maize plants were pretreated with the peptide prior to infection with fungal pathogens. Based on cell death and lesion severity, ZmPep1 pretreatment was found to enhance resistance to both southern leaf blight and anthracnose stalk rot caused by Cochliobolis heterostrophus and Colletotrichum graminicola, respectively. We present evidence that peptides belonging to the Pep family have a conserved function across plant species as endogenous regulators of innate immunity and may have potential for enhancing disease resistance in crops.


Assuntos
Arabidopsis/metabolismo , Imunidade Inata/imunologia , Peptídeos/metabolismo , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Homologia de Sequência de Aminoácidos , Zea mays/imunologia , Sequência de Aminoácidos , Ascomicetos/efeitos dos fármacos , Ascomicetos/fisiologia , Benzoxazinas/metabolismo , Colletotrichum/efeitos dos fármacos , Colletotrichum/fisiologia , Ciclopentanos/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Imunidade Inata/efeitos dos fármacos , Indóis/metabolismo , Dados de Sequência Molecular , Oxilipinas/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica , Zea mays/efeitos dos fármacos , Zea mays/genética , Zea mays/microbiologia , ortoaminobenzoatos/metabolismo
17.
J Exp Bot ; 59(3): 609-18, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18256048

RESUMO

Ethylene is a gaseous plant hormone involved in many physiological processes including senescence, fruit ripening, and defence. Here the effects of pollination and wound-induced ethylene signals on transcript accumulation of benzoyl CoA:benzyl alcohol/phenylethanol benzoyltransferase (PhBPBT) are shown in Petuniaxhybrida cv. Mitchell 'Diploid' (MD). In petunia, PhBPBT is responsible for the biosynthesis of both benzyl benzoate and phenylethyl benzoate from benzyl alcohol and phenylethanol, respectively. RNAi-silenced lines, with reduced PhBPBT transcript, displayed reduced benzyl benzoate emission, and increased benzyl alcohol levels. Detailed expression analysis showed that PhBPBT is regulated by both light and an endogenous circadian rhythm, while it is also differentially regulated in response to ethylene in a tissue-specific manner. Twenty-four hours following pollination of MD flowers, expression of PhBPBT decreases in the corolla, while it increases in the ovary after 48 h. This is caused by ethylene that is emitted from the flower coinciding with fertilization as this is not observed in transgenic ethylene-insensitive plants (CaMV35S::etr1-1; 44568). Ethylene is also emitted from vegetative tissue of petunia following mechanical wounding, resulting in an increase in PhBPBT expression in the leaves where expression is normally below detection levels. Indicative of this pattern of expression, we hypothesize that PhBPBT and subsequent benzyl benzoate production is involved in defence-related processes in the corolla prior to pollination, in the ovary immediately following fertilization, and in vegetative tissue in response to wounding.


Assuntos
Etilenos/metabolismo , Flores/metabolismo , Petunia/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Benzoatos/metabolismo , Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica de Plantas , Luz , Petunia/genética , Proteínas de Plantas/genética , Polinização/fisiologia , Interferência de RNA
18.
J Chem Ecol ; 34(3): 291-300, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18256881

RESUMO

Neonate fall armyworms [FAW; Spodoptera frugiperda (Smith)] often encounter conspecific herbivore damage as they disperse from an egg mass to an initial feeding site. We investigated the orientation responses of dispersing neonates to herbivore damage in cowpea seedlings, specifically examining whether neonate behaviors were affected by inceptin, the primary elicitor of FAW-induced defenses in cowpea leaves. We focused on responses to damage caused by conspecific first instars, as might occur during the dispersal of siblings from an egg mass. Inceptin contents of damaging first instar FAW were controlled through their diets, with leaf-fed FAW producing inceptins in their oral secretions, and root-fed or starved FAW lacking these elicitors. In a bioassay designed to evaluate neonate dispersal off a host plant, a higher percentage of neonates remained on herbivore-induced or inceptin-treated plants than on undamaged plants, mechanically damaged plants, freshly damaged plants, or on plants damaged by FAW lacking inceptins. Further investigations of neonate responses to plant odors with a four-arm olfactometer demonstrated that neonate attraction to odors from 4-h old FAW damage was strongly dependent on previous diet of the damaging larvae. Neonates were attracted to odors from 4-h old FAW damage over odors from undamaged plants or fresh FAW damage, provided that the damaging larvae had previously ingested leaf material. In a direct comparison of odors from induced plants, plants damaged by leaf-fed FAW were as attractive as plants treated with synthetic inceptin. GC-MS analysis confirmed that (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) was the major volatile induced by FAW herbivory. While both DMNT and undamaged plant odors were more attractive than air, neonates preferred DMNT-supplemented plant odors. These results suggest that neonate FAW exploit herbivore-induced plant volatiles as host plant location and recognition cues.


Assuntos
Fabaceae/parasitologia , Interações Hospedeiro-Parasita , Feromônios/farmacologia , Comportamento Predatório , Spodoptera/fisiologia , Alcenos/análise , Alcenos/farmacologia , Animais , Fabaceae/efeitos dos fármacos , Fabaceae/fisiologia , Odorantes , Peptídeos/análise , Peptídeos/farmacologia , Feromônios/análise , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/parasitologia , Folhas de Planta/fisiologia , Plântula/efeitos dos fármacos , Plântula/parasitologia , Plântula/fisiologia
19.
Plant Physiol ; 144(2): 793-805, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17369425

RESUMO

In cowpea (Vigna unguiculata), fall armyworm (Spodoptera frugiperda) herbivory and oral secretions (OS) elicit phytohormone production and volatile emission due to inceptin [Vu-In; (+)ICDINGVCVDA(-)], a peptide derived from chloroplastic ATP synthase gamma-subunit (cATPC) proteins. Elicitor-induced plant volatiles can function as attractants for natural enemies of insect herbivores. We hypothesized that inceptins are gut proteolysis products and that larval OS should contain a mixture of related peptides. In this study, we identified three additional cATPC fragments, namely Vu-(GE+)In [(+)GEICDINGVCVDA(-)], Vu-(E+)In [(+)EICDINGVCVDA(-)], and Vu-In(-A) [(+)ICDINGVCVD(-)]. Leaf bioassays for induced ethylene (E) production demonstrated similar effective concentration(50) values of 68, 45, and 87 fmol leaf(-1) for Vu-In, Vu-(E+)In, and Vu-(GE+)In, respectively; however, Vu-In(-A) proved inactive. Shortly following ingestion of recombinant proteins harboring cATPC sequences, larval OS revealed similar concentrations of the three elicitors with 80% of the potential inceptin-related peptides recovered. Rapidly shifting peptide ratios over time were consistent with continued proteolysis and preferential stability of inceptin. Likewise, larvae ingesting host plants with inceptin precursors containing an internal trypsin cleavage site rapidly lost OS-based elicitor activity. OS containing inceptin elicited a rapid and sequential induction of defense-related phytohormones jasmonic acid, E, and salicylic acid at 30, 120, and 240 min, respectively, and also the volatile (E)-4,8-dimethyl-1,3,7-nonatriene. Similar to established peptide signals such as systemin and flg22, amino acid substitutions of Vu-In demonstrate an essential role for aspartic acid residues and an unaltered C terminus. In cowpea, insect gut proteolysis following herbivory generates inappropriate fragments of an essential metabolic enzyme enabling plant non-self-recognition.


Assuntos
ATPases de Cloroplastos Translocadoras de Prótons/metabolismo , Fabaceae/enzimologia , Comportamento Alimentar/fisiologia , Peptídeos/metabolismo , Spodoptera/metabolismo , Alcenos/metabolismo , Aminoácidos/metabolismo , Animais , Ciclopentanos/metabolismo , Etilenos/metabolismo , Cadeia Alimentar , Larva/metabolismo , Larva/fisiologia , Dados de Sequência Molecular , Boca/metabolismo , Oxilipinas , Peptídeos/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais/fisiologia , Spodoptera/fisiologia , Fatores de Tempo , Tripsina/metabolismo
20.
J Chem Ecol ; 31(3): 439-59, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15898494

RESUMO

Interactions between the phytohormones ethylene, salicylic acid (SA), and jasmonic acid (JA) are thought to regulate the specificity of induced plant defenses against microbial pathogens and herbivores. However, the nature of these interactions leading to induced plant volatile emissions during pathogen infection is unclear. We previously demonstrated that a complex volatile blend including (E)-beta-ocimene, methyl salicylate (MeSA), and numerous sesquiterpenes was released by tobacco plants, Nicotiana tabacum K326, infected with an avirulent/incompatible strain of Pseudomonas syringae pv. tomato (Pst DC3000). In contrast, a volatile blend, mainly consisting of MeSA and two unidentified sesquiterpenes, was released by plants infected with P. syringae pv. tabaci (Pstb) in a virulent/compatible interaction. In this study, we examined the interaction of multiple pathogen stresses, phytohormone signaling, and induced volatile emissions in tobacco. Combined pathogen infection involved the inoculation of one leaf with Pst DC 3000 and of a second leaf, from the same plant, with Pstb. Combined infection reduced emissions of ocimene and MeSA compared to plants infected with Pst DC 3000 alone, but with no significant changes in total sesquiterpene emissions. In the compatible interaction, Pstb elicited a large ethylene burst with a peak emission occurring 3 days after inoculation. In contrast, the incompatible interaction involving Pst DC3000 displayed no such ethylene induction. Pstb-induced ethylene production was not significantly altered by Pst DC3000 in the combined infection. We postulated that Pstb-induced ethylene production may play a regulatory role in altering the typical volatile emission in tobacco in response to Pst DC3000 infection. To clarify the role of ethylene, we dynamically applied ethylene to the headspace of tobacco plants following infection with Pst DC3000. Consistent with Pstb-induced ethylene, exogenous ethylene reduced both ocimene and MeSA emissions, and selectively altered the ratios and amounts of induced sesquiterpene emissions. Our findings suggest that ethylene can regulate the magnitude and blend of induced volatile emissions during pathogen infection.


Assuntos
Etilenos/metabolismo , Nicotiana/microbiologia , Nicotiana/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Pseudomonas syringae/efeitos dos fármacos , Ciclopentanos/metabolismo , Etilenos/farmacologia , Imunidade Inata , Oxilipinas , Doenças das Plantas/microbiologia , Folhas de Planta/fisiologia , Pseudomonas syringae/patogenicidade , Ácido Salicílico/metabolismo , Transdução de Sinais , Fatores de Tempo , Nicotiana/metabolismo , Virulência , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA