Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(8): e0309415, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39213296

RESUMO

Acute lymphoblastic leukemia (ALL) is the most common type of malignancy in children. ALL prognosis after initial diagnosis is generally good; however, patients suffering from relapse have a poor outcome. The tumor microenvironment is recognized as an important contributor to relapse, yet the cell-cell interactions involved are complex and difficult to study in traditional experimental models. In the present study, we established an innovative larval zebrafish xenotransplantation model, that allows the analysis of leukemic cells (LCs) within an orthotopic niche using time-lapse microscopic and flow cytometric approaches. LCs homed, engrafted and proliferated within the hematopoietic niche at the time of transplant, the caudal hematopoietic tissue (CHT). A specific dissemination pattern of LCs within the CHT was recorded, as they extravasated over time and formed clusters close to the dorsal aorta. Interactions of LCs with macrophages and endothelial cells could be quantitatively characterized. This zebrafish model will allow the quantitative analysis of LCs in a functional and complex microenvironment, to study mechanisms of niche mediated leukemogenesis, leukemia maintenance and relapse development.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Microambiente Tumoral , Peixe-Zebra , Animais , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Humanos , Modelos Animais de Doenças , Comunicação Celular , Xenoenxertos , Nicho de Células-Tronco , Linhagem Celular Tumoral , Células Endoteliais/patologia , Macrófagos/patologia , Macrófagos/metabolismo , Transplante Heterólogo
2.
Mol Metab ; 74: 101748, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37290673

RESUMO

OBJECTIVE: Cancer cells convert more glucose into lactate than healthy cells, what contributes to their growth advantage. Pyruvate kinase (PK) is a key rate limiting enzyme in this process, what makes it a promising potential therapeutic target. However, currently it is still unclear what consequences the inhibition of PK has on cellular processes. Here, we systematically investigate the consequences of PK depletion for gene expression, histone modifications and metabolism. METHODS: Epigenetic, transcriptional and metabolic targets were analysed in different cellular and animal models with stable knockdown or knockout of PK. RESULTS: Depleting PK activity reduces the glycolytic flux and causes accumulation of glucose-6-phosphate (G6P). Such metabolic perturbation results in stimulation of the activity of a heterodimeric pair of transcription factors MondoA and MLX but not in a major reprogramming of the global H3K9ac and H3K4me3 histone modification landscape. The MondoA:MLX heterodimer upregulates expression of thioredoxin-interacting protein (TXNIP) - a tumour suppressor with multifaceted anticancer activity. This effect of TXNIP upregulation extends beyond immortalised cancer cell lines and is applicable to multiple cellular and animal models. CONCLUSIONS: Our work shows that actions of often pro-tumorigenic PK and anti-tumorigenic TXNIP are tightly linked via a glycolytic intermediate. We suggest that PK depletion stimulates the activity of MondoA:MLX transcription factor heterodimers and subsequently, increases cellular TXNIP levels. TXNIP-mediated inhibition of thioredoxin (TXN) can reduce the ability of cells to scavenge reactive oxygen species (ROS) leading to the oxidative damage of cellular structures including DNA. These findings highlight an important regulatory axis affecting tumour suppression mechanisms and provide an attractive opportunity for combination cancer therapies targeting glycolytic activity and ROS-generating pathways.


Assuntos
Neoplasias , Piruvato Quinase , Animais , Piruvato Quinase/genética , Espécies Reativas de Oxigênio , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Tiorredoxinas/química , Tiorredoxinas/metabolismo
3.
Front Immunol ; 12: 677994, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557186

RESUMO

Neutrophils are key players in innate immunity and originate from the bone marrow of the adult mammalian organism. In mammals, mature neutrophils are released from the bone marrow into the peripheral blood where they circulate until their recruitment to sites of inflammation in a multistep adhesion cascade. Here, adhesion molecules of the ß2 integrin family (CD11/CD18) are critically required for the initial neutrophil adhesion to the inflamed endothelium and several post-adhesion steps allowing their extravasation into the inflamed tissue. Within the mammalian tissue, interstitial neutrophil migration can occur widely independent of ß2 integrins. This is in sharp contrast to neutrophil recruitment in zebrafish larvae (Danio rerio) where neutrophils originate from the caudal hematopoietic tissue and mainly migrate interstitially to sites of lesion upon the early onset of inflammation. However, neutrophils extravasate from the circulation to the inflamed tissue in zebrafish larvae at later-time points. Although zebrafish larvae are a widely accepted model system to analyze neutrophil trafficking in vivo, the functional impact of ß2 integrins for neutrophil trafficking during acute inflammation is completely unknown in this model. In this study, we generated zebrafish with a genetic deletion of CD18, the ß subunit of ß2 integrins, using CRISPR/Cas9 technology. Sequence alignments demonstrated a high similarity of the amino acid sequences between zebrafish and human CD18 especially in the functionally relevant I-like domain. In addition, the cytoplasmic domain of CD18 harbors two highly conserved NXXF motifs suggesting that zebrafish CD18 may share functional properties of human CD18. Accordingly, CD18 knock-out (KO) zebrafish larvae displayed the key symptoms of patients suffering from leukocyte adhesion deficiency (LAD) type I due to defects in ITGB2, the gene for CD18. Importantly, CD18 KO zebrafish larvae showed reduced neutrophil trafficking to sites of sterile inflammation despite the fact that an increased number of neutrophils was detectable in the circulation. By demonstrating the functional importance of CD18 for neutrophil trafficking in zebrafish larvae, our findings shed new light on neutrophil biology in vertebrates and introduce a new model organism for studying LAD type I.


Assuntos
Antígenos CD18/metabolismo , Adesão Celular/genética , Movimento Celular/genética , Infiltração de Neutrófilos/genética , Neutrófilos/imunologia , Peixe-Zebra/genética , Peixe-Zebra/imunologia , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Antígenos CD11/química , Antígenos CD11/genética , Antígenos CD11/metabolismo , Antígenos CD18/química , Antígenos CD18/genética , Adesão Celular/imunologia , Movimento Celular/imunologia , Modelos Animais de Doenças , Deleção de Genes , Técnicas de Inativação de Genes , Inflamação/genética , Inflamação/imunologia , Integrinas/metabolismo , Larva/genética , Larva/imunologia , Síndrome da Aderência Leucocítica Deficitária/imunologia , Infiltração de Neutrófilos/imunologia
4.
Blood Adv ; 5(3): 796-811, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33560393

RESUMO

Granulin is a pleiotropic protein involved in inflammation, wound healing, neurodegenerative disease, and tumorigenesis. These roles in human health have prompted research efforts to use granulin to treat rheumatoid arthritis and frontotemporal dementia and to enhance wound healing. But how granulin contributes to each of these diverse biological functions remains largely unknown. Here, we have uncovered a new role for granulin during myeloid cell differentiation. We have taken advantage of the tissue-specific segregation of the zebrafish granulin paralogues to assess the functional role of granulin in hematopoiesis without perturbing other tissues. By using our zebrafish model of granulin deficiency, we revealed that during normal and emergency myelopoiesis, myeloid progenitors are unable to terminally differentiate into neutrophils and macrophages in the absence of granulin a (grna), failing to express the myeloid-specific genes cebpa, rgs2, lyz, mpx, mpeg1, mfap4, and apoeb. Functionally, macrophages fail to recruit to the wound, resulting in abnormal healing. Our CUT&RUN experiments identify Pu.1, which together with Irf8, positively regulates grna expression. In vivo imaging and RNA sequencing experiments show that grna inhibits the expression of gata1, leading to the repression of the erythroid program. Importantly, we demonstrated functional conservation between the mammalian granulin and the zebrafish ortholog grna. Our findings uncover a previously unrecognized role for granulin during myeloid cell differentiation, which opens a new field of study that can potentially have an impact on different aspects of human health and expand the therapeutic options for treating myeloid disorders such as neutropenia or myeloid leukemia.


Assuntos
Doenças Neurodegenerativas , Peixe-Zebra , Animais , Proteínas de Transporte , Proteínas da Matriz Extracelular , Glicoproteínas , Granulinas , Hematopoese , Humanos , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
5.
J Exp Med ; 217(5)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32078678

RESUMO

Remyelination requires innate immune system function, but how exactly microglia and macrophages clear myelin debris after injury and tailor a specific regenerative response is unclear. Here, we asked whether pro-inflammatory microglial/macrophage activation is required for this process. We established a novel toxin-based spinal cord model of de- and remyelination in zebrafish and showed that pro-inflammatory NF-κB-dependent activation in phagocytes occurs rapidly after myelin injury. We found that the pro-inflammatory response depends on myeloid differentiation primary response 88 (MyD88). MyD88-deficient mice and zebrafish were not only impaired in the degradation of myelin debris, but also in initiating the generation of new oligodendrocytes for myelin repair. We identified reduced generation of TNF-α in lesions of MyD88-deficient animals, a pro-inflammatory molecule that was able to induce the generation of new premyelinating oligodendrocytes. Our study shows that pro-inflammatory phagocytic signaling is required for myelin debris degradation, for inflammation resolution, and for initiating the generation of new oligodendrocytes.


Assuntos
Doenças Desmielinizantes/patologia , Inflamação/patologia , Bainha de Mielina/metabolismo , Oligodendroglia/patologia , Animais , Axônios/efeitos dos fármacos , Axônios/patologia , Células Cultivadas , Modelos Animais de Doenças , Larva/efeitos dos fármacos , Lisofosfatidilcolinas/metabolismo , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Mutação/genética , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/patologia , Fator 88 de Diferenciação Mieloide/metabolismo , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Fagócitos/efeitos dos fármacos , Fagócitos/patologia , Fagossomos/efeitos dos fármacos , Fagossomos/metabolismo , Proteoma/metabolismo , Remielinização/efeitos dos fármacos , Medula Espinal/patologia , Fator de Necrose Tumoral alfa/farmacologia , Peixe-Zebra
6.
Mol Neurodegener ; 12(1): 6, 2017 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-28088213

RESUMO

BACKGROUND: The most frequent genetic cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) is the expansion of a GGGGCC hexanucleotide repeat in a non-coding region of the chromosome 9 open reading frame 72 (C9orf72) locus. The pathological hallmarks observed in C9orf72 repeat expansion carriers are the formation of RNA foci and deposition of dipeptide repeat (DPR) proteins derived from repeat associated non-ATG (RAN) translation. Currently, it is unclear whether formation of RNA foci, DPR translation products, or partial loss of C9orf72 predominantly drive neurotoxicity in vivo. By using a transgenic approach in zebrafish we address if the most frequently found DPR in human ALS/FTLD brain, the poly-Gly-Ala (poly-GA) protein, is toxic in vivo. METHOD: We generated several transgenic UAS responder lines that express either 80 repeats of GGGGCC alone, or together with a translation initiation ATG codon forcing the translation of GA80-GFP protein upon crossing to a Gal4 driver. The GGGGCC repeat and GA80 were fused to green fluorescent protein (GFP) lacking a start codon to monitor protein translation by GFP fluorescence. RESULTS: Zebrafish transgenic for the GGGGCC repeat lacking an ATG codon showed very mild toxicity in the absence of poly-GA. However, strong toxicity was induced upon ATG initiated expression of poly-GA, which was rescued by injection of an antisense morpholino interfering with start codon dependent poly-GA translation. This morpholino only interferes with GA80-GFP translation without affecting repeat transcription, indicating that the toxicity is derived from GA80-GFP. CONCLUSION: These novel transgenic C9orf72 associated repeat zebrafish models demonstrate poly-GA toxicity in zebrafish. Reduction of poly-GA protein rescues toxicity validating this therapeutic approach to treat C9orf72 repeat expansion carriers. These novel animal models provide a valuable tool for drug discovery to reduce DPR associated toxicity in ALS/FTLD patients with C9orf72 repeat expansions.


Assuntos
Esclerose Lateral Amiotrófica/genética , Degeneração Lobar Frontotemporal/genética , Fases de Leitura Aberta , Peptídeos/toxicidade , Esclerose Lateral Amiotrófica/patologia , Animais , Animais Geneticamente Modificados , Western Blotting , Repetições de Dinucleotídeos , Modelos Animais de Doenças , Degeneração Lobar Frontotemporal/patologia , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Reação em Cadeia da Polimerase , Polímeros , Peixe-Zebra
7.
Nat Med ; 22(7): 735-43, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27294876

RESUMO

Immunomodulatory drugs (IMiDs), such as thalidomide and its derivatives lenalidomide and pomalidomide, are key treatment modalities for hematologic malignancies, particularly multiple myeloma (MM) and del(5q) myelodysplastic syndrome (MDS). Cereblon (CRBN), a substrate receptor of the CRL4 ubiquitin ligase complex, is the primary target by which IMiDs mediate anticancer and teratogenic effects. Here we identify a ubiquitin-independent physiological chaperone-like function of CRBN that promotes maturation of the basigin (BSG; also known as CD147) and solute carrier family 16 member 1 (SLC16A1; also known as MCT1) proteins. This process allows for the formation and activation of the CD147-MCT1 transmembrane complex, which promotes various biological functions, including angiogenesis, proliferation, invasion and lactate export. We found that IMiDs outcompete CRBN for binding to CD147 and MCT1, leading to destabilization of the CD147-MCT1 complex. Accordingly, IMiD-sensitive MM cells lose CD147 and MCT1 expression after being exposed to IMiDs, whereas IMiD-resistant cells retain their expression. Furthermore, del(5q) MDS cells have elevated CD147 expression, which is attenuated after IMiD treatment. Finally, we show that BSG (CD147) knockdown phenocopies the teratogenic effects of thalidomide exposure in zebrafish. These findings provide a common mechanistic framework to explain both the teratogenic and pleiotropic antitumor effects of IMiDs.


Assuntos
Basigina/efeitos dos fármacos , Proteínas de Ciclo Celular/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Imunossupressores/farmacologia , Proteínas Oncogênicas/efeitos dos fármacos , Peptídeo Hidrolases/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos , Teratogênese/efeitos dos fármacos , Talidomida/farmacologia , Proteínas Adaptadoras de Transdução de Sinal , Basigina/genética , Basigina/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Humanos , Lenalidomida , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Teratogênese/genética , Talidomida/análogos & derivados , Ubiquitina-Proteína Ligases
8.
Genetics ; 195(3): 703-13, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23979585

RESUMO

Targeted mouse mutants are instrumental for the analysis of gene function in health and disease. We recently provided proof-of-principle for the fast-track mutagenesis of the mouse genome, using transcription activator-like effector nucleases (TALENs) in one-cell embryos. Here we report a routine procedure for the efficient production of disease-related knockin and knockout mutants, using improved TALEN mRNAs that include a plasmid-coded poly(A) tail (TALEN-95A), circumventing the problematic in vitro polyadenylation step. To knock out the C9orf72 gene as a model of frontotemporal lobar degeneration, TALEN-95A mutagenesis induced sequence deletions in 41% of pups derived from microinjected embryos. Using TALENs together with mutagenic oligodeoxynucleotides, we introduced amyotrophic lateral sclerosis patient-derived missense mutations in the fused in sarcoma (Fus) gene at a rate of 6.8%. For the simple identification of TALEN-induced mutants and their progeny we validate high-resolution melt analysis (HRMA) of PCR products as a sensitive and universal genotyping tool. Furthermore, HRMA of off-target sites in mutant founder mice revealed no evidence for undesired TALEN-mediated processing of related genomic sequences. The combination of TALEN-95A mRNAs for enhanced mutagenesis and of HRMA for simplified genotyping enables the accelerated, routine production of new mouse models for the study of genetic disease mechanisms.


Assuntos
Engenharia Genética/métodos , Mutagênese , Sequência de Aminoácidos , Esclerose Lateral Amiotrófica/genética , Animais , Sequência de Bases , Desoxirribonucleases/genética , Desoxirribonucleases/metabolismo , Modelos Animais de Doenças , Feminino , Técnicas de Inativação de Genes/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout/genética , Camundongos Mutantes/genética , Camundongos Transgênicos/genética , Dados de Sequência Molecular , Gravidez , RNA Mensageiro/genética , Proteína FUS de Ligação a RNA/genética , Ativação Transcricional
9.
J Neurosci ; 33(18): 7856-69, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23637177

RESUMO

Proteolytic shedding of cell surface proteins generates paracrine signals involved in numerous signaling pathways. Neuregulin 1 (NRG1) type III is involved in myelination of the peripheral nervous system, for which it requires proteolytic activation by proteases of the ADAM family and BACE1. These proteases are major therapeutic targets for the prevention of Alzheimer's disease because they are also involved in the proteolytic generation of the neurotoxic amyloid ß-peptide. Identification and functional investigation of their physiological substrates is therefore of greatest importance in preventing unwanted side effects. Here we investigated proteolytic processing of NRG1 type III and demonstrate that the ectodomain can be cleaved by three different sheddases, namely ADAM10, ADAM17, and BACE1. Surprisingly, we not only found cleavage by ADAM10, ADAM17, and BACE1 C-terminal to the epidermal growth factor (EGF)-like domain, which is believed to play a pivotal role in signaling, but also additional cleavage sites for ADAM17 and BACE1 N-terminal to that domain. Proteolytic processing at N- and C-terminal sites of the EGF-like domain results in the secretion of this domain from NRG1 type III. The soluble EGF-like domain is functionally active and stimulates ErbB3 signaling in tissue culture assays. Moreover, the soluble EGF-like domain is capable of rescuing hypomyelination in a zebrafish mutant lacking BACE1. Our data suggest that NRG1 type III-dependent myelination is not only controlled by membrane-retained NRG1 type III, but also in a paracrine manner via proteolytic liberation of the EGF-like domain.


Assuntos
Proteínas ADAM/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Neurregulinas/metabolismo , Comunicação Parácrina/fisiologia , Proteína ADAM17 , Animais , Membrana Celular/metabolismo , Células Cultivadas , Cricetinae , Cricetulus , Embrião de Mamíferos , Fator de Crescimento Epidérmico/análogos & derivados , Fator de Crescimento Epidérmico/química , Humanos , Imunoprecipitação , Neurregulinas/genética , Neurônios , Fosforilação , Proteólise , RNA Mensageiro/administração & dosagem , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Células de Schwann , Transfecção , Peixe-Zebra
10.
PLoS One ; 8(4): e60866, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23593334

RESUMO

The hair cells of the inner ear are polarized epithelial cells with a specialized structure at the apical surface, the mechanosensitive hair bundle. Mechanotransduction occurs within the hair bundle, whereas synaptic transmission takes place at the basolateral membrane. The molecular basis of the development and maintenance of the apical and basal compartments in sensory hair cells is poorly understood. Here we describe auditory/vestibular mutants isolated from forward genetic screens in zebrafish with lesions in the adaptor protein 1 beta subunit 1 (ap1b1) gene. Ap1b1 is a subunit of the adaptor complex AP-1, which has been implicated in the targeting of basolateral membrane proteins. In ap1b1 mutants we observed that although the overall development of the inner ear and lateral-line organ appeared normal, the sensory epithelium showed progressive signs of degeneration. Mechanically-evoked calcium transients were reduced in mutant hair cells, indicating that mechanotransduction was also compromised. To gain insight into the cellular and molecular defects in ap1b1 mutants, we examined the localization of basolateral membrane proteins in hair cells. We observed that the Na(+)/K(+)-ATPase pump (NKA) was less abundant in the basolateral membrane and was mislocalized to apical bundles in ap1b1 mutant hair cells. Accordingly, intracellular Na(+) levels were increased in ap1b1 mutant hair cells. Our results suggest that Ap1b1 is essential for maintaining integrity and ion homeostasis in hair cells.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patologia , Mutação/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Comportamento Animal , Compartimento Celular , Clonagem Molecular , Células Ciliadas Vestibulares/metabolismo , Células Ciliadas Vestibulares/patologia , Espaço Intracelular/metabolismo , Mecanotransdução Celular , Dados de Sequência Molecular , Transporte Proteico , Sódio/metabolismo , Estereocílios/metabolismo , Estereocílios/patologia , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/metabolismo
11.
J Neurochem ; 127(4): 471-81, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23406323

RESUMO

Alzheimer's disease is the most frequent dementia. Pathologically, Alzheimer's disease is characterized by the accumulation of senile plaques composed of amyloid ß-peptide (Aß). Two proteases, ß- and γ-secretase proteolytically generate Aß from its precursor, the ß-amyloid precursor protein (APP). Inhibition of ß-secretase, also referred to as beta-site APP cleaving enzyme (BACE1) or γ-secretase is therefore of prime interest for the development of amyloid-lowering drugs. To assess the in vivo function of zebrafish Bace1 (zBace1), we generated zBace1 knock out fish by zinc finger nuclease-mediated genome editing. bace1 mutants (bace1-/-) are hypomyelinated in the PNS while the CNS is not affected. Moreover, the number of mechanosensory neuromasts is elevated in bace1-/-. Mutations in zebrafish Bace2 (zBace2) revealed a distinct melanocyte migration phenotype, which is not observed in bace1-/-. Double homozygous bace1-/-; bace2-/- fish do not enhance the single mutant phenotypes indicating non-redundant distinct physiological functions. Single homozygous bace1 mutants as well as double homozygous bace1 and bace2 mutants are viable and fertile suggesting that Bace1 is a promising drug target without major side effects. The identification of a specific bace2 -/- associated phenotype further allows improving selective Bace1 inhibitors and to distinguish between Bace 1 and Bace 2 inhibition in vivo. Inhibition of BACE1 protease activity has therapeutic importance for Alzheimer's disease. Analysis of BACE1 and BACE2 knock-out zebrafish revealed that they exhibit distinct phenotypes. bace1 mutants display hypomyelination in the PNS and supernumerary neuromasts while in bace2 mutants the shape and migration of melanocytes is affected. These phenotypes are not further enhanced in the viable double mutants. Our data suggest that blocking BACE1 activity is a safe therapeutic approach.


Assuntos
Secretases da Proteína Precursora do Amiloide/genética , Melanócitos/fisiologia , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Animais Geneticamente Modificados , Movimento Celular , Técnicas de Inativação de Genes , Larva/genética , Larva/metabolismo , Modelos Animais , Mutação , Fenótipo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/metabolismo
12.
J Neurosci ; 32(46): 16203-12, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23152604

RESUMO

Mitochondria provide ATP, maintain calcium homeostasis, and regulate apoptosis. Neurons, due to their size and complex geometry, are particularly dependent on the proper functioning and distribution of mitochondria. Thus disruptions of these organelles and their transport play a central role in a broad range of neurodegenerative diseases. While in vitro studies have greatly expanded our knowledge of mitochondrial dynamics, our understanding in vivo remains limited. To address this shortcoming, we developed tools to study mitochondrial dynamics in vivo in optically accessible zebrafish. We demonstrate here that our newly generated tools, including transgenic "MitoFish," can be used to study the in vivo "life cycle" of mitochondria and allows identifying pharmacological and genetic modulators of mitochondrial dynamics. Furthermore we observed profound mitochondrial transport deficits in real time in a zebrafish tauopathy model. By rescuing this phenotype using MARK2 (microtubule-affinity regulating kinase 2), we provide direct in vivo evidence that this kinase regulates axonal transport in a Tau-dependent manner. Thus, our approach allows detailed studies of the dynamics of mitochondria in their natural environment under normal and disease conditions.


Assuntos
Mitocôndrias/patologia , Doenças do Sistema Nervoso/patologia , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Antineoplásicos/farmacologia , Transporte Biológico/fisiologia , Western Blotting , Processamento de Imagem Assistida por Computador , Mitocôndrias/ultraestrutura , Nocodazol/farmacologia , Fenótipo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Células Receptoras Sensoriais/fisiologia , Células Receptoras Sensoriais/ultraestrutura , Proteínas tau/genética
13.
PLoS One ; 5(7): e11783, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20689587

RESUMO

BACKGROUND: Mutations in the gene encoding the E3 ubiquitin ligase parkin (PARK2) are responsible for the majority of autosomal recessive parkinsonism. Similarly to other knockout mouse models of PD-associated genes, parkin knockout mice do not show a substantial neuropathological or behavioral phenotype, while loss of parkin in Drosophila melanogaster leads to a severe phenotype, including reduced lifespan, apoptotic flight muscle degeneration and male sterility. In order to study the function of parkin in more detail and to address possible differences in its role in different species, we chose Danio rerio as a different vertebrate model system. METHODOLOGY/PRINCIPAL FINDINGS: We first cloned zebrafish parkin to compare its biochemical and functional aspects with that of human parkin. By using an antisense knockdown strategy we generated a zebrafish model of parkin deficiency (knockdown efficiency between 50% and 60%) and found that the transient knockdown of parkin does not cause morphological or behavioral alterations. Specifically, we did not observe a loss of dopaminergic neurons in parkin-deficient zebrafish. In addition, we established transgenic zebrafish lines stably expressing parkin by using a Gal4/UAS-based bidirectional expression system. While parkin-deficient zebrafish are more vulnerable to proteotoxicity, increased parkin expression protected transgenic zebrafish from cell death induced by proteotoxic stress. CONCLUSIONS/SIGNIFICANCE: Similarly to human parkin, zebrafish parkin is a stress-responsive protein which protects cells from stress-induced cell death. Our transgenic zebrafish model is a novel tool to characterize the protective capacity of parkin in vivo.


Assuntos
Dopamina/metabolismo , Neurônios/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Apoptose/genética , Apoptose/fisiologia , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Células HeLa , Humanos , Hibridização In Situ , Masculino , Potencial da Membrana Mitocondrial/genética , Potencial da Membrana Mitocondrial/fisiologia , Reação em Cadeia da Polimerase , Ubiquitina-Proteína Ligases/genética , Peixe-Zebra/genética
14.
EMBO J ; 29(16): 2841-57, 2010 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-20606625

RESUMO

Mutations in fused in sarcoma (FUS) are a cause of familial amyotrophic lateral sclerosis (fALS). Patients carrying point mutations in the C-terminus of FUS show neuronal cytoplasmic FUS-positive inclusions, whereas in healthy controls, FUS is predominantly nuclear. Cytoplasmic FUS inclusions have also been identified in a subset of frontotemporal lobar degeneration (FTLD-FUS). We show that a non-classical PY nuclear localization signal (NLS) in the C-terminus of FUS is necessary for nuclear import. The majority of fALS-associated mutations occur within the NLS and impair nuclear import to a degree that correlates with the age of disease onset. This presents the first case of disease-causing mutations within a PY-NLS. Nuclear import of FUS is dependent on Transportin, and interference with this transport pathway leads to cytoplasmic redistribution and recruitment of FUS into stress granules. Moreover, proteins known to be stress granule markers co-deposit with inclusions in fALS and FTLD-FUS patients, implicating stress granule formation in the pathogenesis of these diseases. We propose that two pathological hits, namely nuclear import defects and cellular stress, are involved in the pathogenesis of FUS-opathies.


Assuntos
Esclerose Lateral Amiotrófica/genética , Carioferinas/metabolismo , Mutação Puntual , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Células Cultivadas , Grânulos Citoplasmáticos/patologia , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Carioferinas/genética , Dados de Sequência Molecular , Neurônios/patologia , Estrutura Terciária de Proteína , Proteína FUS de Ligação a RNA/análise , Proteína FUS de Ligação a RNA/química , Peixe-Zebra/embriologia
15.
Neurobiol Dis ; 39(3): 265-71, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20381619

RESUMO

Methylene blue is an FDA approved compound with a variety of pharmacologic activities. It inhibits aggregation of several amyloidogenic proteins known to be deposited in neurodegenerative diseases. Recently, it has been proposed that methylene blue shows significant beneficial effects in a phase 2 clinical trial by slowing cognitive decline in Alzheimer's disease patients. To analyze its therapeutic potential, we investigated the effect of methylene blue on neurotoxicity in a zebrafish model for tauopathies. Transgenic expression of the frontotemporal dementia associated Tau-P301L mutation recapitulates a number of the pathological features observed in humans including abnormal phosphorylation and folding of Tau, tangle formation and Tau dependent neuronal loss. Upon incubation of zebrafish larvae with methylene blue, neither abnormal phosphorylation nor neuronal cell loss, reduced neurite outgrowth or a swimming defect were rescued. Methylene blue is biologically active in zebrafish since it reduced aggregation of a huntingtin variant containing a stretch of 102 glutamine residues. However, although huntingtin aggregation was largely prevented by methylene blue, huntingtin-dependent toxicity was unaffected. Our findings are consistent with the hypothesis that toxicity is not necessarily associated with deposition of insoluble amyloid proteins.


Assuntos
Morte Celular/efeitos dos fármacos , Azul de Metileno/farmacologia , Neurônios/efeitos dos fármacos , Peptídeos/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo , Animais , Animais Geneticamente Modificados/metabolismo , Axônios/efeitos dos fármacos , Western Blotting , Imunofluorescência , Neurônios/metabolismo , Peptídeos/genética , Fosforilação/efeitos dos fármacos , Tauopatias/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas tau/genética
16.
Exp Hematol ; 36(9): 1132-42, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18550261

RESUMO

OBJECTIVE: Inherited or acquired mutations in the heme biosynthetic pathway leads to a debilitating class of diseases collectively known as porphyrias, with symptoms that can include anemia, cutaneous photosensitivity, and neurovisceral dysfunction. In a genetic screen for hematopoietic mutants, we isolated a zebrafish mutant, montalcino (mno), which displays hypochromic anemia and porphyria. The objective of this study was to identify the defective gene and characterize the phenotype of the zebrafish mutant. MATERIALS AND METHODS: Genetic linkage analysis was utilized to identify the region harboring the mno mutation. Candidate gene analysis together with reverse transcriptase polymerase chain reaction was utilized to identify the genetic mutation, which was confirmed via allele-specific oligo hybridizations. Whole mount in situ hybridizations and o-dianisidine staining were used to characterize the phenotype of the mno mutant. mRNA and morpholino microinjections were performed to phenocopy and/or rescue the mutant phenotype. RESULTS: Homozygous mno mutant embryos have a defect in the protoporphyrinogen oxidase (ppox) gene, which encodes the enzyme that catalyzes the oxidation of protoporphyrinogen. Homozygous mutant embryos are deficient in hemoglobin, and by 36 hours post-fertilization are visibly anemic and porphyric. The hypochromic anemia of mno embryos was partially rescued by human ppox, providing evidence for the conservation of function between human and zebrafish ppox. CONCLUSION: In humans, mutations in ppox result in variegate porphyria. At present, effective treatment for acute attacks requires the administration intravenous hemin and/or glucose. Thus, mno represents a powerful model for investigation, and a tool for future screens aimed at identifying chemical modifiers of variegate porphyria.


Assuntos
Anemia Hipocrômica/genética , Modelos Animais de Doenças , Porfiria Variegada/genética , Protoporfirinogênio Oxidase/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Códon sem Sentido , Sequência Conservada , DNA Complementar/genética , Embrião não Mamífero/patologia , Hemoglobinas/biossíntese , Hemoglobinas/deficiência , Homozigoto , Humanos , Camundongos , Dados de Sequência Molecular , Fenótipo , Porfiria Variegada/sangue , Porfiria Variegada/embriologia , Proteínas Recombinantes de Fusão/fisiologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/deficiência
17.
J Biol Chem ; 282(12): 9195-203, 2007 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-17170113

RESUMO

Several neurodegenerative diseases, including Huntington disease (HD), are associated with aberrant folding and aggregation of polyglutamine (polyQ) expansion proteins. Here we established the zebrafish, Danio rerio, as a vertebrate HD model permitting the screening for chemical suppressors of polyQ aggregation and toxicity. Upon expression in zebrafish embryos, polyQ-expanded fragments of huntingtin (htt) accumulated in large SDS-insoluble inclusions, reproducing a key feature of HD pathology. Real time monitoring of inclusion formation in the living zebrafish indicated that inclusions grow by rapid incorporation of soluble htt species. Expression of mutant htt increased the frequency of embryos with abnormal morphology and the occurrence of apoptosis. Strikingly, apoptotic cells were largely devoid of visible aggregates, suggesting that soluble oligomeric precursors may instead be responsible for toxicity. As in nonvertebrate polyQ disease models, the molecular chaperones, Hsp40 and Hsp70, suppressed both polyQ aggregation and toxicity. Using the newly established zebrafish model, two compounds of the N'-benzylidene-benzohydrazide class directed against mammalian prion proved to be potent inhibitors of polyQ aggregation, consistent with a common structural mechanism of aggregation for prion and polyQ disease proteins.


Assuntos
Apoptose , Mutação , Peptídeos/química , Animais , Proteínas de Fluorescência Verde/química , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP70/química , Modelos Químicos , Modelos Moleculares , Peptídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Frações Subcelulares , Termodinâmica , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA