Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 9(11)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687615

RESUMO

A systems analysis was conducted to determine the potential molecular mechanisms underlying differential immunogenicity and protective efficacy results of a clinical trial of the radiation-attenuated whole-sporozoite PfSPZ vaccine in African infants. Innate immune activation and myeloid signatures at prevaccination baseline correlated with protection from P. falciparum parasitemia in placebo controls. These same signatures were associated with susceptibility to parasitemia among infants who received the highest and most protective PfSPZ vaccine dose. Machine learning identified spliceosome, proteosome, and resting DC signatures as prevaccination features predictive of protection after highest-dose PfSPZ vaccination, whereas baseline circumsporozoite protein-specific (CSP-specific) IgG predicted nonprotection. Prevaccination innate inflammatory and myeloid signatures were associated with higher sporozoite-specific IgG Ab response but undetectable PfSPZ-specific CD8+ T cell responses after vaccination. Consistent with these human data, innate stimulation in vivo conferred protection against infection by sporozoite injection in malaria-naive mice while diminishing the CD8+ T cell response to radiation-attenuated sporozoites. These data suggest a dichotomous role of innate stimulation for malaria protection and induction of protective immunity by whole-sporozoite malaria vaccines. The uncoupling of vaccine-induced protective immunity achieved by Abs from more protective CD8+ T cell responses suggests that PfSPZ vaccine efficacy in malaria-endemic settings may be constrained by opposing antigen presentation pathways.


Assuntos
Imunidade Inata , Vacinas Antimaláricas , Malária Falciparum , Plasmodium falciparum , Esporozoítos , Vacinas Atenuadas , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/administração & dosagem , Imunidade Inata/imunologia , Humanos , Animais , Malária Falciparum/prevenção & controle , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Camundongos , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/administração & dosagem , Esporozoítos/imunologia , Esporozoítos/efeitos da radiação , Linfócitos T CD8-Positivos/imunologia , Lactente , Proteínas de Protozoários/imunologia , Anticorpos Antiprotozoários/imunologia , Feminino , Parasitemia/imunologia , Parasitemia/prevenção & controle , Imunoglobulina G/imunologia , Imunoglobulina G/sangue , Eficácia de Vacinas
2.
Cell Host Microbe ; 32(3): 382-395.e10, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38309259

RESUMO

Methionine is an essential proteinogenic amino acid, but its excess can lead to deleterious effects. Inborn errors of methionine metabolism resulting from loss of function in cystathionine ß-synthase (CBS) cause classic homocystinuria (HCU), which is managed by a methionine-restricted diet. Synthetic biotics are gastrointestinal tract-targeted live biotherapeutics that can be engineered to replicate the benefits of dietary restriction. In this study, we assess whether SYNB1353, an E. coli Nissle 1917 derivative, impacts circulating methionine and homocysteine levels in animals and healthy volunteers. In both mice and nonhuman primates (NHPs), SYNB1353 blunts the appearance of plasma methionine and plasma homocysteine in response to an oral methionine load. A phase 1 clinical study conducted in healthy volunteers subjected to an oral methionine challenge demonstrates that SYNB1353 is well tolerated and blunts plasma methionine by 26%. Overall, SYNB1353 represents a promising approach for methionine reduction with potential utility for the treatment of HCU.


Assuntos
Homocistinúria , Metionina , Humanos , Camundongos , Animais , Metionina/metabolismo , Metionina/uso terapêutico , Voluntários Saudáveis , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Animais de Doenças , Homocistinúria/tratamento farmacológico , Homocistinúria/metabolismo , Racemetionina , Homocisteína/uso terapêutico
3.
ACS Nano ; 15(10): 15930-15939, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34586780

RESUMO

Neutrophils are crucial for host defense but are notorious for causing sterile inflammatory damage. Activated neutrophils in inflamed tissue can liberate histone H4, which was recently shown to perpetuate inflammation by permeating membranes via the generation of negative Gaussian curvature (NGC), leading to lytic cell death. Here, we show that it is possible to build peptides or proteins that cancel NGC in membranes and thereby suppress pore formation, and demonstrate that they can inhibit H4 membrane remodeling and thereby reduce histone H4-driven lytic cell death and resultant inflammation. As a demonstration of principle, we use apolipoprotein A-I (apoA-I) mimetic peptide apoMP1. X-ray structural studies and theoretical calculations show that apoMP1 induces nanoscopic positive Gaussian curvature (PGC), which interacts with the NGC induced by the N-terminus of histone H4 (H4n) to inhibit membrane permeation. Interestingly, we show that induction of PGC can inhibit membrane-permeating activity in general and "turn off" diverse membrane-permeating molecules besides H4n. In vitro experiments show an apoMP1 dose-dependent rescue of H4 cytotoxicity. Using a mouse model, we show that tissue accumulation of neutrophils, release of neutrophil extracellular traps (NETs), and extracellular H4 all strongly correlate independently with local tissue cell death in multiple organs, but administration of apoMP1 inhibits histone H4-mediated cytotoxicity and strongly prevents organ tissue damage.


Assuntos
Armadilhas Extracelulares , Neutrófilos , Morte Celular , Histonas , Peptídeos/farmacologia
4.
Sci Rep ; 11(1): 3646, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574348

RESUMO

A promotional role for androgen receptor (AR) signaling in hepatocellular carcinogenesis is emerging. In pre-clinical models, including diethylnitrosamine- (DEN-) induced hepatocellular carcinoma (HCC), anti-androgen therapies delay hepatocarcinogenesis. However, pharmacologic anti-androgen therapy in advanced HCC patients fails, suggesting that AR plays a role in HCC onset. This study aims to characterize AR expression and function throughout DEN-induced liver inflammation and carcinogenesis and evaluate the efficacy of prophylactic AR antagonism to prevent hepatocarcinogenesis. We demonstrate that pharmacologic AR antagonism with enzalutamide inhibits hepatocellular carcinogenesis. With enzalutamide treatment, we observe decreased CYP2E1 expression, reducing DEN-induced hepatocyte death and DNA ethyl-adducts. AR protein expression analyses show that DEN causes an initial upregulation of AR in portal fibroblasts and leukocytes, but not hepatocytes, suggesting that hepatocyte-autonomous AR signaling is not essential for DEN-induced carcinogenesis. Ablating androgen signaling by surgical castration reduced pre-carcinogen Kupffer cell populations but did not alter DEN-mediated immune cell recruitment nor AR expression. In this study, we identified that anti-androgen interventions modulate mutagenic DNA adducts, tumour initiation, and immune cell composition. Additionally, we find that AR expression in hepatocytes is not present during nor required for early DEN-mediated carcinogenesis.


Assuntos
Carcinogênese/genética , Carcinoma Hepatocelular/genética , Citocromo P-450 CYP2E1/genética , Neoplasias Hepáticas/genética , Receptores Androgênicos/genética , Androgênios/genética , Animais , Carcinógenos/toxicidade , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/patologia , Dietilnitrosamina/toxicidade , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Hepatócitos , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Masculino , Camundongos , Ratos , Receptores Androgênicos/efeitos dos fármacos , Transdução de Sinais/genética
5.
BMC Biol ; 18(1): 83, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620114

RESUMO

BACKGROUND: Experimental reproducibility in mouse models is impacted by both genetics and environment. The generation of reproducible data is critical for the biomedical enterprise and has become a major concern for the scientific community and funding agencies alike. Among the factors that impact reproducibility in experimental mouse models is the variable composition of the microbiota in mice supplied by different commercial vendors. Less attention has been paid to how the microbiota of mice supplied by a particular vendor might change over time. RESULTS: In the course of conducting a series of experiments in a mouse model of malaria, we observed a profound and lasting change in the severity of malaria in mice infected with Plasmodium yoelii; while for several years mice obtained from a specific production suite of a specific commercial vendor were able to clear the parasites effectively in a relatively short time, mice subsequently shipped from the same unit suffered much more severe disease. Gut microbiota analysis of frozen cecal samples identified a distinct and lasting shift in bacteria populations that coincided with the altered response of the later shipments of mice to infection with malaria parasites. Germ-free mice colonized with cecal microbiota from mice within the same production suite before and after this change followed by Plasmodium infection provided a direct demonstration that the change in gut microbiota profoundly impacted the severity of malaria. Moreover, spatial changes in gut microbiota composition were also shown to alter the acute bacterial burden following Salmonella infection, and tumor burden in a lung tumorigenesis model. CONCLUSION: These changes in gut bacteria may have impacted the experimental reproducibility of diverse research groups and highlight the need for both laboratory animal providers and researchers to collaborate in determining the methods and criteria needed to stabilize the gut microbiota of animal breeding colonies and research cohorts, and to develop a microbiota solution to increase experimental rigor and reproducibility.


Assuntos
Modelos Animais de Doenças , Microbioma Gastrointestinal , Malária/fisiopatologia , Plasmodium yoelii/fisiologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Análise Espaço-Temporal
6.
Nat Methods ; 16(4): 319-322, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30923372

RESUMO

Site-specific protein cleavage is essential for many protein-production protocols and typically requires proteases. We report the development of a chemical protein-cleavage method that is achieved through the use of a sequence-specific nickel-assisted cleavage (SNAC)-tag. We demonstrate that the SNAC-tag can be inserted before both water-soluble and membrane proteins to achieve fusion protein cleavage under biocompatible conditions with efficiency comparable to that of enzymes, and that the method works even when enzymatic cleavages fail.


Assuntos
Enzimas/química , Níquel/química , Proteínas/química , Materiais Biocompatíveis , Cromatografia Líquida de Alta Pressão , Biologia Computacional , DNA/química , Endopeptidases/genética , Endopeptidases/metabolismo , Escherichia coli/metabolismo , Técnicas Genéticas , Hidrólise , Espectrometria de Massas , Biblioteca de Peptídeos , Peptídeos/química , Domínios Proteicos , Proteólise , Proteínas Recombinantes/química , Especificidade por Substrato , Temperatura , Trombina/química
7.
PLoS One ; 11(9): e0162427, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27588422

RESUMO

Following activation of naïve T cells there are dynamic changes in the metabolic pathways used by T cells to support both the energetic needs of the cell and the macromolecules required for growth and proliferation. Among other changes, lipid metabolism undergoes dynamic transitions between fatty acid oxidation and fatty acid synthesis as cells progress from naïve to effector and effector to memory T cells. The hydrophobic nature of lipids requires that they be bound to protein chaperones within a cell. Fatty acid binding proteins (FABPs) represent a large class of lipid chaperones, with epidermal FABP (E-FABP) expressed in T cells. The objective of this study was to determine the contribution of E-FABP in antigen-specific T cell responses. Following infection with Listeria monocytogenes, we observed similar clonal expansion, contraction and formation of memory CD8 T cells in WT and E-FABP-/- mice, which also exhibited similar phenotypic and functional characteristics. Analysis of Listeria-specific CD4 T cells also revealed no defect in the expansion, contraction, and formation of memory CD4 T cells in E-FABP-/- mice. These data demonstrate that E-FABP is dispensable for antigen-specific T cell responses following a bacterial infection.


Assuntos
Proteínas de Ligação a Ácido Graxo/metabolismo , Memória Imunológica , Listeriose/metabolismo , Proteínas de Neoplasias/metabolismo , Linfócitos T/metabolismo , Animais , Proteínas de Ligação a Ácido Graxo/genética , Listeria monocytogenes , Listeriose/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Neoplasias/genética , Linfócitos T/microbiologia
8.
PLoS Pathog ; 12(6): e1005705, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27355424

RESUMO

Triggering antimicrobial mechanisms in macrophages infected with intracellular pathogens, such as mycobacteria, is critical to host defense against the infection. To uncover the unique and shared antimicrobial networks induced by the innate and adaptive immune systems, gene expression profiles generated by RNA sequencing (RNAseq) from human monocyte-derived macrophages (MDMs) activated with TLR2/1 ligand (TLR2/1L) or IFN-γ were analyzed. Weighed gene correlation network analysis identified modules of genes strongly correlated with TLR2/1L or IFN-γ that were linked by the "defense response" gene ontology term. The common TLR2/1L and IFN-γ inducible human macrophage host defense network contained 16 antimicrobial response genes, including S100A12, which was one of the most highly induced genes by TLR2/1L. There is limited information on the role of S100A12 in infectious disease, leading us to test the hypothesis that S100A12 contributes to host defense against mycobacterial infection in humans. We show that S100A12 is sufficient to directly kill Mycobacterium tuberculosis and Mycobacterium leprae. We also demonstrate that S100A12 is required for TLR2/1L and IFN-γ induced antimicrobial activity against M. leprae in infected macrophages. At the site of disease in leprosy, we found that S100A12 was more strongly expressed in skin lesions from tuberculoid leprosy (T-lep), the self-limiting form of the disease, compared to lepromatous leprosy (L-lep), the progressive form of the disease. These data suggest that S100A12 is part of an innate and adaptive inducible antimicrobial network that contributes to host defense against mycobacteria in infected macrophages.


Assuntos
Hanseníase/imunologia , Macrófagos/imunologia , Proteína S100A12/imunologia , Citometria de Fluxo , Imunofluorescência , Perfilação da Expressão Gênica , Humanos , Macrófagos/microbiologia , Infecções por Mycobacterium/imunologia , Mycobacterium leprae/imunologia , Mycobacterium tuberculosis/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
9.
J Invest Dermatol ; 135(6): 1581-1589, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25668237

RESUMO

Although antibiotics are a common treatment for acne, the difficulties inherent to effective antimicrobial penetration in sebum and selective antimicrobial action in the skin are compounded by increasing resistance of Propionibacterium acnes clinical isolates. To address these problems, we engineered Pentobra, a peptide-aminoglycoside molecule that has multiple mechanisms of antibacterial action and investigated whether it can be a potential candidate for the treatment of acne. Pentobra combines the potent ribosomal activity of aminoglycosides with the bacteria-selective membrane-permeabilizing abilities of antimicrobial peptides. Pentobra demonstrated potent and selective killing of P. acnes but not against human skin cells in vitro. In direct comparison, Pentobra demonstrated bactericidal activity and drastically outperformed free tobramycin (by 5-7 logs) against multiple P. acnes clinical strains. Moreover, electron microscopic studies showed that Pentobra had robust membrane activity, as treatment with Pentobra killed P. acnes cells and caused leakage of intracellular contents. Pentobra may also have potential anti-inflammatory effects as demonstrated by suppression of some P. acnes-induced chemokines. Importantly, the killing activity was maintained in sebaceous environments as Pentobra was bactericidal against clinical isolates in comedones extracts isolated from human donors. Our work demonstrates that equipping aminoglycosides with selective membrane activity is a viable approach for developing antibiotics against P. acnes that are effective in cutaneous environments.


Assuntos
Aminoglicosídeos/química , Antibacterianos/química , Peptídeos/química , Propionibacterium acnes/efeitos dos fármacos , Acne Vulgar/tratamento farmacológico , Membrana Celular/efeitos dos fármacos , Citocinas/metabolismo , Farmacorresistência Bacteriana , Ensaio de Imunoadsorção Enzimática , Humanos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica , Monócitos/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/microbiologia , Especificidade da Espécie , Células-Tronco , Tobramicina/química
10.
ACS Cent Sci ; 1(2): 83-8, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-27162954

RESUMO

Cell penetrating peptides (CPPs) are intriguing molecules that have received much attention, both in terms of mechanistic analysis and as transporters for intracellular therapeutic delivery. Most CPPs contain an abundance of cationic charged residues, typically arginine, where the amino acid compositions, rather than specific sequences, tend to determine their ability to enter cells. Hydrophobic residues are often added to cationic sequences to create efficient CPPs, but typically at the penalty of increased cytotoxicity. Here, we examined polypeptides containing glycosylated, cationic derivatives of methionine, where we found these hydrophilic polypeptides to be surprisingly effective as CPPs and to also possess low cytotoxicity. X-ray analysis of how these new polypeptides interact with lipid membranes revealed that the incorporation of sterically demanding hydrophilic cationic groups in polypeptides is an unprecedented new concept for design of potent CPPs.

11.
J Am Chem Soc ; 134(46): 19207-16, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23061419

RESUMO

We investigate the physical origin of peptide-induced membrane curvature by contrasting differences between H-bonding interactions of prototypical cationic amino acids, arginine (Arg) and lysine (Lys), with phosphate groups of phospholipid heads using quantum mechanical (QM) calculations of a minimum model and test the results via synthetic oxaorbornene-based transporter sequences without the geometric constraints of polypeptide backbones. QM calculations suggest that although individual Lys can in principle coordinate two phosphates, they are not able to do so at small inter-Lys distances without drastic energetic penalties. In contrast, Arg can coordinate two phosphates down to less than 5 Å, where guanidinium groups can stack "face to face". In agreement with these observations, poly-Lys cannot generate the nanoscale positive curvature necessary for inducing negative Gaussian membrane curvature, in contrast to poly-Arg. Also consistent with QM calculations, polyguanidine-oxanorbornene homopolymers (PGONs) showed that curvature generation is exquisitely sensitive to the guanidinium group spacing when the phosphate groups are near close packing. Addition of phenyl or butyl hydrophobic groups into guanidine-oxanorbornene polymers increased the amount of induced saddle-splay membrane curvature and broadened the range of lipid compositions where saddle-splay curvature was induced. The enhancement of saddle-splay curvature generation and relaxation of lipid composition requirements via addition of hydrophobicity is consistent with membrane activity profiles. While PGON polymers displayed selective antimicrobial activity against prototypical (Gram positive and negative) bacteria, polymers with phenyl and butyl groups were also active against red blood cells. Our results suggest that it is possible to achieve deterministic molecular design of pore-forming peptides.


Assuntos
Membranas Artificiais , Teoria Quântica , Modelos Moleculares , Espalhamento de Radiação
12.
J Biol Chem ; 287(26): 21866-72, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22566697

RESUMO

The conserved tridisulfide array of the α-defensin family imposes a common triple-stranded ß-sheet topology on peptides that may have highly diverse primary structures, resulting in differential outcomes after targeted mutagenesis. In mouse cryptdin-4 (Crp4) and rhesus myeloid α-defensin-4 (RMAD4), complete substitutions of Arg with Lys affect bactericidal peptide activity very differently. Lys-for-Arg mutagenesis attenuates Crp4, but RMAD4 activity remains mostly unchanged. Here, we show that the differential biological effect of Lys-for-Arg replacements can be understood by the distinct phase behavior of the experimental peptide-lipid system. In Crp4, small-angle x-ray scattering analyses showed that Arg-to-Lys replacements shifted the induced nanoporous phases to a different range of lipid compositions compared with the Arg-rich native peptide, consistent with the attenuation of bactericidal activity by Lys-for-Arg mutations. In contrast, such phases generated by RMAD4 were largely unchanged. The concordance between small-angle x-ray scattering measurements and biological activity provides evidence that specific types of α-defensin-induced membrane curvature-generating tendencies correspond directly to bactericidal activity via membrane destabilization.


Assuntos
Arginina/metabolismo , Precursores de Proteínas/metabolismo , alfa-Defensinas/metabolismo , Animais , Anti-Infecciosos/química , Peptídeos Catiônicos Antimicrobianos/química , Arginina/química , Defensinas/química , Escherichia coli/metabolismo , Imunidade Inata , Lipídeos/química , Lisina/química , Camundongos , Distribuição Normal , Peptídeos/química , Espalhamento de Radiação , Raios X , alfa-Defensinas/química
13.
Environ Toxicol Chem ; 31(2): 347-54, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22105220

RESUMO

Polybrominated diphenyl ethers (PBDEs) are bioaccumulative, persistent organic pollutants used as flame retardants in consumer goods. Concentrations of PBDEs in North American wildlife have been increasing for decades and been shown to have estrogenic effects on sexual development. No studies, however, have examined the effects of PBDEs on the sexual development of North American frogs at ecologically relevant concentrations. This study examined the effects of five dietary concentrations of DE-71 (0, 1.1, 6.1, 71.4, and 634 ng ΣPBDEs/g diet), a technical PBDE mixture, on the gonadal development of the northern leopard frog, Rana pipiens. Tadpoles were exposed chronically from the time they became free-swimming until metamorphosis. Frogs were killed either at metamorphic climax or 10 weeks after completing metamorphosis, processed for histology, and examined for alterations in sexual development. The experimental group exposed to PBDEs at 1.1 ng/g had a significantly larger proportion of females compared with the expected 50:50 sex ratio. At 10 weeks post-metamorphosis, male frogs exposed to 6.1 and 71.4 ng/g had significantly smaller testes, but all other measure of gonadal development tested showed no effects. No intersex or increased incidence of gonadal abnormality were detected. These findings indicate that PBDEs may disrupt sexual differentiation in frogs at low, environmentally relevant concentrations.


Assuntos
Retardadores de Chama/toxicidade , Gônadas/efeitos dos fármacos , Éteres Difenil Halogenados/toxicidade , Animais , Comportamento Animal/efeitos dos fármacos , Estrogênios/toxicidade , Feminino , Gônadas/crescimento & desenvolvimento , Gônadas/patologia , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Masculino , Metamorfose Biológica/efeitos dos fármacos , Rana pipiens/crescimento & desenvolvimento , Rana pipiens/fisiologia , Diferenciação Sexual/efeitos dos fármacos , Razão de Masculinidade , Natação
14.
Eur J Immunol ; 42(3): 629-40, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22161269

RESUMO

After infection or vaccination, antigen-specific T cells proliferate then contract in numbers to a memory set point. T-cell contraction is observed after both acute and prolonged infections although it is unknown if contraction is regulated similarly in both scenarios. Here, we show that contraction of antigen-specific CD8(+) and CD4(+) T cells is markedly reduced in TNF/perforin-double deficient (DKO) mice responding to attenuated Listeria monocytogenes infection. Reduced contraction in DKO mice was associated with delayed clearance of infection and sustained T-cell proliferation during the normal contraction interval. Mechanistically, sustained T-cell proliferation mapped to prolonged infection in the absence of TNF; however, reduced contraction required the additional absence of perforin since T cells in mice lacking either TNF or perforin (singly deficient) underwent normal contraction. Thus, while T-cell contraction after acute infection is independent of peforin, a perforin-dependent pathway plays a previously unappreciated role to mediate contraction of antigen-specific CD8(+) and CD4(+) T cells during prolonged L. monocytogenes infection.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Perforina/imunologia , Animais , Linfócitos T CD4-Positivos/microbiologia , Linfócitos T CD8-Positivos/microbiologia , Proliferação de Células , Citometria de Fluxo , Memória Imunológica/imunologia , Listeriose/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Organismos Livres de Patógenos Específicos , Fator de Necrose Tumoral alfa/imunologia
15.
Cell Host Microbe ; 9(6): 451-62, 2011 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-21669394

RESUMO

While subunit vaccines have shown partial efficacy in clinical trials, radiation-attenuated sporozoites (RAS) remain the "gold standard" for sterilizing protection against Plasmodium infection in human vaccinees. The variability in immunogenicity and replication introduced by the extensive, random DNA damage necessary to generate RAS could be overcome by genetically attenuated parasites (GAP) designed via gene deletion to arrest at defined points during liver-stage development. Here, we demonstrate the principle that late liver stage-arresting GAP induce larger and broader CD8 T cell responses that provide superior protection in inbred and outbred mice compared to RAS or early-arresting GAP immunizations. Late liver stage-arresting GAP also engender high levels of cross-stage and cross-species protection and complete protection when administered by translationally relevant intradermal or subcutaneous routes. Collectively, our results underscore the potential utility of late liver stage-arresting GAP as broadly protective next-generation live-attenuated malaria vaccines and support their potential as a powerful model for identifying antigens to generate cross-stage protection.


Assuntos
Fígado/parasitologia , Vacinas Antimaláricas/imunologia , Malária/imunologia , Plasmodium berghei/genética , Plasmodium berghei/imunologia , Plasmodium yoelii/genética , Plasmodium yoelii/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/parasitologia , Deleção de Genes , Humanos , Fígado/imunologia , Malária/parasitologia , Malária/prevenção & controle , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium yoelii/crescimento & desenvolvimento , Esporozoítos/crescimento & desenvolvimento , Esporozoítos/imunologia , Vacinação , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia
16.
J Immunol ; 186(10): 5873-84, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21460205

RESUMO

Plasmodium infections are responsible for millions of cases of malaria and ∼1 million deaths annually. Recently, we showed that sterile protection (95%) in BALB/c mice required Plasmodium berghei circumsporozoite protein (CS(252-260))-specific memory CD8 T cells exceeding a threshold of 1% of all PBLs. Importantly, it is not known if Plasmodium species affect the threshold of CS-specific memory CD8 T cells required for protection. Furthermore, C57BL/6 mice immunized with radiation-attenuated parasites are more difficult to protect against Plasmodium sporozoite challenge than similarly immunized BALB/c mice; however, it is not known whether this is the result of different CD8 T cell specificity, functional attributes of CD8 T cells, or mouse strain-specific factors expressed in nonhematopoietic cells. In this article, we show that more CS-specific memory CD8 T cells are required for protection against P. yoelii sporozoite challenge than for protection against P. berghei sporozoite challenge. Furthermore, P. berghei CS(252)-specific CD8 T cells exhibit reduced protection against P. berghei sporozoite challenge in the context of C57BL/6 and C57BL/10 non-MHC-linked genes in CB6F1 and B10.D2 mice, respectively. Generation and immunization of reciprocal chimeric mice between BALB/c and B10.D2 strains revealed that B10 background factors expressed by nonhematopoietic cells increased the threshold required for protection through a CD8 T cell-extrinsic mechanism. Finally, reduced CS-specific memory CD8 T cell protection in P. yoelii-infected BALB/c or P. berghei-infected B10.D2 mice correlated with increased rates of Plasmodium amplification in the liver. Thus, both Plasmodium species and strain-specific background genes in nonhematopoietic cells determine the threshold of memory CD8 T cells required for protection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Plasmodium berghei/imunologia , Plasmodium yoelii/imunologia , Proteínas de Protozoários/imunologia , Esporozoítos/imunologia , Animais , Interações Hospedeiro-Parasita , Interferon gama/imunologia , Interleucina-2/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA/parasitologia , Plasmodium berghei/efeitos da radiação , Plasmodium yoelii/efeitos da radiação , Subpopulações de Linfócitos T/imunologia , Fator de Necrose Tumoral alfa/imunologia
17.
Methods Enzymol ; 492: 127-49, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21333790

RESUMO

In the presence of specialized proteins or peptides, a biological membrane can spontaneously restructure itself to allow communication between the intracellular and the extracellular sides. Examples of these proteins include cell-penetrating peptides and antimicrobial peptides (AMPs), which interact with cell membranes in complex ways. We briefly review cell-penetrating peptides and AMPs, and describe in detail how recombinant AMPs are made and their activity evaluated, using α-defensins as a specific example. We also review X-ray scattering methods used in studying peptide-membrane interactions, focusing on the procedures for small-angle X-ray scattering experiments on peptide-membrane interactions at realistic solution conditions, using both laboratory and synchrotron sources.


Assuntos
Lipídeos/química , Peptídeos/química , Espalhamento a Baixo Ângulo , Difração de Raios X/métodos , Animais , Camundongos , Modelos Moleculares , Celulas de Paneth , alfa-Defensinas/química
18.
PLoS Pathog ; 6(7): e1000998, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20657824

RESUMO

Radiation-attenuated Plasmodium sporozoites (RAS) are the only vaccine shown to induce sterilizing protection against malaria in both humans and rodents. Importantly, these "whole-parasite" vaccines are currently under evaluation in human clinical trials. Studies with inbred mice reveal that RAS-induced CD8 T cells targeting liver-stage parasites are critical for protection. However, the paucity of defined T cell epitopes for these parasites has precluded precise understanding of the specific characteristics of RAS-induced protective CD8 T cell responses. Thus, it is not known whether quantitative or qualitative differences in RAS-induced CD8 T cell responses underlie the relative resistance or susceptibility of immune inbred mice to sporozoite challenge. Moreover, whether extraordinarily large CD8 T cell responses are generated and required for protection following RAS immunization, as has been described for CD8 T cell responses following single-antigen subunit vaccination, remains unknown. Here, we used surrogate T cell activation markers to identify and track whole-parasite, RAS-vaccine-induced effector and memory CD8 T cell responses. Our data show that the differential susceptibility of RAS-immune inbred mouse strains to Plasmodium berghei or P. yoelii sporozoite challenge does not result from host- or parasite-specific decreases in the CD8 T cell response. Moreover, the surrogate activation marker approach allowed us for the first time to evaluate CD8 T cell responses and protective immunity following RAS-immunization in outbred hosts. Importantly, we show that compared to a protective subunit vaccine that elicits a CD8 T cell response to a single epitope, diversifying the targeted antigens through whole-parasite RAS immunization only minimally, if at all, reduced the numerical requirements for memory CD8 T cell-mediated protection. Thus, our studies reveal that extremely high frequencies of RAS-induced memory CD8 T cells are required, but may not suffice, for sterilizing anti-Plasmodial immunity. These data provide new insights into protective CD8 T cell responses elicited by RAS-immunization in genetically diverse hosts, information with relevance to developing attenuated whole-parasite vaccines.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunização , Fígado/parasitologia , Vacinas Antimaláricas/imunologia , Esporozoítos/imunologia , Animais , Antimaláricos/imunologia , Imunidade , Memória Imunológica , Fígado/imunologia , Vacinas Antimaláricas/administração & dosagem , Camundongos , Esporozoítos/efeitos da radiação , Vacinas Atenuadas/imunologia
19.
J Immunol ; 184(5): 2528-38, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20097864

RESUMO

Malaria results in >1,000,000 deaths per year worldwide. Although no licensed vaccine exists, much effort is currently focused on subunit vaccines that elicit CD8 T cell responses directed against Plasmodium parasite liver stage Ags. Multiple immune-effector molecules play a role in antimicrobial immunity mediated by memory CD8 T cells, including IFN-gamma, perforin, TRAIL, Fas ligand, and TNF-alpha. However, it is not known which pathways are required for memory CD8 T cell-mediated immunity against liver stage Plasmodium infection. In this study, we used a novel immunization strategy to generate memory CD8 T cells in the BALB/c mouse model of P. berghei or P. yoelii sporozoite infection to examine the role of immune-effector molecules in resistance to the liver stage infection. Our studies reveal that endogenous memory CD8 T cell-mediated protection against both parasite species is, in part, dependent on IFN-gamma, whereas perforin was only critical in protection against P. yoelii. We further show that neutralization of TNF-alpha in immunized mice markedly reduces memory CD8 T cell-mediated protection against both parasite species. Thus, our studies identify IFN-gamma and TNF-alpha as important components of the noncytolytic pathways that underlie memory CD8 T cell-mediated immunity against liver stage Plasmodium infection. Our studies also show that the effector pathways that memory CD8 T cells use to eliminate liver stage infection are, in part, Plasmodium species specific.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vacinas Antimaláricas/imunologia , Malária/imunologia , Plasmodium berghei/imunologia , Plasmodium yoelii/imunologia , Esporozoítos/imunologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Culicidae/parasitologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Proteína Ligante Fas/imunologia , Proteína Ligante Fas/metabolismo , Feminino , Memória Imunológica/imunologia , Interferon gama/deficiência , Interferon gama/genética , Interferon gama/imunologia , Listeria monocytogenes/imunologia , Hepatopatias Parasitárias/imunologia , Hepatopatias Parasitárias/parasitologia , Malária/parasitologia , Malária/prevenção & controle , Vacinas Antimaláricas/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Perforina/deficiência , Perforina/genética , Perforina/imunologia , Transdução de Sinais/imunologia , Ligante Indutor de Apoptose Relacionado a TNF/deficiência , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
20.
Langmuir ; 26(2): 1035-42, 2010 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-19775143

RESUMO

The stability of functionalized nanoparticles generally results from both steric and electrostatic interactions. Viruses like bacteriophage MS2 have adopted similar strategies for stability against aggregation, including a net negative charge under natural water conditions and using polypeptides that form loops extending from the surface of the protein capsid for stabilization. In natural systems, dissolved organic matter can adsorb to and effectively functionalize nanoparticle surfaces, affecting the fate and transport of these nanoparticles. We used time-resolved dynamic light scattering to measure the aggregation kinetics of a model virus, bacteriophage MS2, across a range of solution chemistries to determine what factors might destabilize viruses in aquatic systems. In monovalent electrolytes (LiCl, NaCl, and KCl), aggregation of MS2 could not be induced within a reasonable kinetic time frame, and MS2 was stable even at salt concentrations greater than 1.0 M. Aggregation of MS2 could be induced in divalent electrolytes when we employed Ca(2+). This trend was also observed in solutions containing 10 mg/L Suwannee River organic matter (SROM) reference material. Even at Ca(2+) concentrations as high 200 mM, diffusion-controlled aggregation was never achieved, demonstrating an additional barrier to aggregation. These results were confirmed by small-angle X-ray scattering experiments, which indicate a transition from repulsive to attractive interactions between MS2 virus particles as monovalent salts are replaced by divalent salts.


Assuntos
Levivirus/efeitos dos fármacos , Levivirus/fisiologia , Compostos Orgânicos/farmacologia , Sais/farmacologia , Cloreto de Sódio/farmacologia , Cloreto de Cálcio/química , Cloreto de Cálcio/farmacologia , Cátions Monovalentes/química , Cátions Monovalentes/farmacologia , Eletrólitos , Cloreto de Lítio/química , Cloreto de Lítio/farmacologia , Compostos Orgânicos/química , Cloreto de Potássio/química , Cloreto de Potássio/farmacologia , Sais/química , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA