Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acad Radiol ; 22(11): 1443-8, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26259546

RESUMO

RATIONALE AND OBJECTIVES: The clinical utility of supine in-magnet bicycling in combination with phosphorus magnetic resonance spectroscopy ((31)P MRS) to evaluate quadriceps muscle metabolism was examined in four children with juvenile dermatomyositis (JDM) in remission and healthy age- and gender-matched controls. MATERIALS AND METHODS: Two identical maximal supine bicycling tests were performed using a magnetic resonance-compatible ergometer. During the first test, cardiopulmonary performance was established in the exercise laboratory. During the second test, quadriceps energy balance and acid/base balance during incremental exercise and phosphocreatine recovery were determined using (31)P MRS. RESULTS: During the first test, no significant differences were found between patients with JDM and their healthy peers regarding cardiopulmonary performance. The outcomes of the first test indicate that both groups attained maximal performance. During the second test, quadriceps phosphocreatine and pH time courses were similar in all but one patient experiencing idiopathic postexercise pain. This patient demonstrated faster phosphocreatine depletion and acidification during exercise, yet postexercise mitochondrial adenosine triphosphate synthesis rate measured by phosphocreatine recovery kinetics was approximately twofold faster than control (time constant 23 seconds vs 43 ± 7 seconds, respectively). CONCLUSIONS: These results highlight the utility of in-magnet cycle ergometry in combination with (31)P MRS to assess and monitor muscle energetic patterns in pediatric patients with inflammatory myopathies.


Assuntos
Dermatite/metabolismo , Teste de Esforço/métodos , Espectroscopia de Ressonância Magnética/métodos , Miosite/metabolismo , Músculo Quadríceps/metabolismo , Trifosfato de Adenosina/biossíntese , Adolescente , Metabolismo Energético , Feminino , Humanos , Masculino , Mitocôndrias Musculares/metabolismo , Fosfocreatina/metabolismo , Projetos Piloto
2.
PLoS One ; 7(3): e34118, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22470528

RESUMO

The regulation of the 100-fold dynamic range of mitochondrial ATP synthesis flux in skeletal muscle was investigated. Hypotheses of key control mechanisms were included in a biophysical model of oxidative phosphorylation and tested against metabolite dynamics recorded by (31)P nuclear magnetic resonance spectroscopy ((31)P MRS). Simulations of the initial model featuring only ADP and Pi feedback control of flux failed in reproducing the experimentally sampled relation between myoplasmic free energy of ATP hydrolysis (ΔG(p) = ΔG(p)(o')+RT ln ([ADP][Pi]/[ATP]) and the rate of mitochondrial ATP synthesis at low fluxes (<0.2 mM/s). Model analyses including Monte Carlo simulation approaches and metabolic control analysis (MCA) showed that this problem could not be amended by model re-parameterization, but instead required reformulation of ADP and Pi feedback control or introduction of additional control mechanisms (feed forward activation), specifically at respiratory Complex III. Both hypotheses were implemented and tested against time course data of phosphocreatine (PCr), Pi and ATP dynamics during post-exercise recovery and validation data obtained by (31)P MRS of sedentary subjects and track athletes. The results rejected the hypothesis of regulation by feed forward activation. Instead, it was concluded that feedback control of respiratory chain complexes by inorganic phosphate is essential to explain the regulation of mitochondrial ATP synthesis flux in skeletal muscle throughout its full dynamic range.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Fosfatos/metabolismo , Difosfato de Adenosina/metabolismo , Metabolismo Energético , Humanos , Espectroscopia de Ressonância Magnética , Potencial da Membrana Mitocondrial , Modelos Teóricos , Termodinâmica
3.
Am J Physiol Regul Integr Comp Physiol ; 300(6): R1316-25, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21451138

RESUMO

Past simulations of oxidative ATP metabolism in skeletal muscle have predicted that elimination of the creatine kinase (CK) reaction should result in dramatically faster oxygen consumption dynamics during transitions in ATP turnover rate. This hypothesis was investigated. Oxygen consumption of fast-twitch (FT) muscle isolated from wild-type (WT) and transgenic mice deficient in the myoplasmic (M) and mitochondrial (Mi) CK isoforms (MiM CK(-/-)) were measured at 20°C at rest and during electrical stimulation. MiM CK(-/-) muscle oxygen consumption activation kinetics during a step change in contraction rate were 30% faster than WT (time constant 53 ± 3 vs. 69 ± 4 s, respectively; mean ± SE, n = 8 and 6, respectively). MiM CK(-/-) muscle oxygen consumption deactivation kinetics were 380% faster than WT (time constant 74 ± 4 s vs. 264 ± 4 s, respectively). Next, the experiments were simulated using a computational model of the oxidative ATP metabolic network in FT muscle featuring ADP and Pi feedback control of mitochondrial respiration (J. A. L. Jeneson, J. P. Schmitz, N. A. van den Broek, N. A. van Riel, P. A. Hilbers, K. Nicolay, J. J. Prompers. Am J Physiol Endocrinol Metab 297: E774-E784, 2009) that was reparameterized for 20°C. Elimination of Pi control via clamping of the mitochondrial Pi concentration at 10 mM reproduced past simulation results of dramatically faster kinetics in CK(-/-) muscle, while inclusion of Pi control qualitatively explained the experimental observations. On this basis, it was concluded that previous studies of the CK-deficient FT muscle phenotype underestimated the contribution of Pi to mitochondrial respiratory control.


Assuntos
Creatina Quinase Forma MM/deficiência , Creatina Quinase Forma MM/metabolismo , Mitocôndrias Musculares/fisiologia , Fibras Musculares de Contração Rápida/metabolismo , Músculo Esquelético/metabolismo , Consumo de Oxigênio/fisiologia , Fosfatos/metabolismo , Difosfato de Adenosina/metabolismo , Animais , Fenômenos Biomecânicos , Respiração Celular/fisiologia , Creatina Quinase Forma MM/genética , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Modelos Animais , Modelos Teóricos , Fenótipo
4.
Am J Physiol Endocrinol Metab ; 297(3): E774-84, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19622784

RESUMO

The transduction function for ADP stimulation of mitochondrial ATP synthesis in skeletal muscle was reconstructed in vivo and in silico to investigate the magnitude and origin of mitochondrial sensitivity to cytoplasmic ADP concentration changes. Dynamic in vivo measurements of human leg muscle phosphocreatine (PCr) content during metabolic recovery from contractions were performed by (31)P-NMR spectroscopy. The cytoplasmic ADP concentration ([ADP]) and rate of oxidative ATP synthesis (Jp) at each time point were calculated from creatine kinase equilibrium and the derivative of a monoexponential fit to the PCr recovery data, respectively. Reconstructed [ADP]-Jp relations for individual muscles containing more than 100 data points were kinetically characterized by nonlinear curve fitting yielding an apparent kinetic order and ADP affinity of 1.9 +/- 0.2 and 0.022 +/- 0.003 mM, respectively (means +/- SD; n = 6). Next, in silico [ADP]-Jp relations for skeletal muscle were generated using a computational model of muscle oxidative ATP metabolism whereby model parameters corresponding to mitochondrial enzymes were randomly changed by 50-150% to determine control of mitochondrial ADP sensitivity. The multiparametric sensitivity analysis showed that mitochondrial ADP ultrasensitivity is an emergent property of the integrated mitochondrial enzyme network controlled primarily by kinetic properties of the adenine nucleotide translocator.


Assuntos
Difosfato de Adenosina/farmacologia , Resistência a Medicamentos/fisiologia , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/fisiologia , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/fisiologia , Trifosfato de Adenosina/metabolismo , Adulto , Simulação por Computador , Exercício Físico/fisiologia , Feminino , Humanos , Cinética , Masculino , Mitocôndrias Musculares/metabolismo , Modelos Biológicos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA