Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Blood Adv ; 8(3): 766-779, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38147624

RESUMO

ABSTRACT: It is still not fully understood how genetic haploinsufficiency in del(5q) myelodysplastic syndrome (MDS) contributes to malignant transformation of hematopoietic stem cells. We asked how compound haploinsufficiency for Csnk1a1 and Egr1 in the common deleted region on chromosome 5 affects hematopoietic stem cells. Additionally, Trp53 was disrupted as the most frequently comutated gene in del(5q) MDS using CRISPR/Cas9 editing in hematopoietic progenitors of wild-type (WT), Csnk1a1-/+, Egr1-/+, Csnk1a1/Egr1-/+ mice. A transplantable acute leukemia only developed in the Csnk1a1-/+Trp53-edited recipient. Isolated blasts were indefinitely cultured ex vivo and gave rise to leukemia after transplantation, providing a tool to study disease mechanisms or perform drug screenings. In a small-scale drug screening, the collaborative effect of Csnk1a1 haploinsufficiency and Trp53 sensitized blasts to the CSNK1 inhibitor A51 relative to WT or Csnk1a1 haploinsufficient cells. In vivo, A51 treatment significantly reduced blast counts in Csnk1a1 haploinsufficient/Trp53 acute leukemias and restored hematopoiesis in the bone marrow. Transcriptomics on blasts and their normal counterparts showed that the derived leukemia was driven by MAPK and Myc upregulation downstream of Csnk1a1 haploinsufficiency cooperating with a downregulated p53 axis. A collaborative effect of Csnk1a1 haploinsufficiency and p53 loss on MAPK and Myc upregulation was confirmed on the protein level. Downregulation of Myc protein expression correlated with efficient elimination of blasts in A51 treatment. The "Myc signature" closely resembled the transcriptional profile of patients with del(5q) MDS with TP53 mutation.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Animais , Humanos , Camundongos , Medula Óssea/metabolismo , Deleção Cromossômica , Haploinsuficiência , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
2.
BMC Biol ; 20(1): 141, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705990

RESUMO

BACKGROUND: DNA methylation is involved in the epigenetic regulation of gene expression during developmental processes and is primarily established by the DNA methyltransferase 3A (DNMT3A) and 3B (DNMT3B). DNMT3A is one of the most frequently mutated genes in clonal hematopoiesis and leukemia, indicating that it plays a crucial role for hematopoietic differentiation. However, the functional relevance of Dnmt3a for hematopoietic differentiation and hematological malignancies has mostly been analyzed in mice, with the specific role for human hematopoiesis remaining elusive. In this study, we therefore investigated if DNMT3A is essential for hematopoietic differentiation of human induced pluripotent stem cells (iPSCs). RESULTS: We generated iPSC lines with knockout of either exon 2, 19, or 23 and analyzed the impact of different DNMT3A exon knockouts on directed differentiation toward mesenchymal and hematopoietic lineages. Exon 19-/- and 23-/- lines displayed an almost entire absence of de novo DNA methylation during mesenchymal and hematopoietic differentiation. Yet, differentiation efficiency was only slightly reduced in exon 19-/- and rather increased in exon 23-/- lines, while there was no significant impact on gene expression in hematopoietic progenitors (iHPCs). Notably, DNMT3A-/- iHPCs recapitulate some DNA methylation patterns of acute myeloid leukemia (AML) with DNMT3A mutations. Furthermore, multicolor genetic barcoding revealed growth advantage of exon 23-/- iHPCs in a syngeneic competitive differentiation assay. CONCLUSIONS: Our results demonstrate that iPSCs with homozygous knockout of different exons of DNMT3A remain capable of mesenchymal and hematopoietic differentiation-and exon 23-/- iHPCs even gained growth advantage-despite loss of almost the entire de novo DNA methylation. Partial recapitulation of DNA methylation patterns of AML with DNMT3A mutations by our DNMT3A knockout iHPCs indicates that our model system can help to elucidate mechanisms of clonal hematopoiesis.


Assuntos
Células-Tronco Pluripotentes Induzidas , Leucemia Mieloide Aguda , Animais , Diferenciação Celular/genética , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , DNA Metiltransferase 3A , Epigênese Genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Camundongos
3.
Blood Adv ; 6(6): 1780-1796, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35016204

RESUMO

How genetic haploinsufficiency contributes to the clonal dominance of hematopoietic stem cells (HSCs) in del(5q) myelodysplastic syndrome (MDS) remains unresolved. Using a genetic barcoding strategy, we performed a systematic comparison on genes implicated in the pathogenesis of del(5q) MDS in direct competition with each other and wild-type (WT) cells with single-clone resolution. Csnk1a1 haploinsufficient HSCs expanded (oligo)clonally and outcompeted all other tested genes and combinations. Csnk1a1-/+ multipotent progenitors showed a proproliferative gene signature and HSCs showed a downregulation of inflammatory signaling/immune response. In validation experiments, Csnk1a1-/+ HSCs outperformed their WT counterparts under a chronic inflammation stimulus, also known to be caused by neighboring genes on chromosome 5. We therefore propose a crucial role for Csnk1a1 haploinsufficiency in the selective advantage of 5q-HSCs, implemented by creation of a unique competitive advantage through increased HSC self-renewal and proliferation capacity, as well as increased fitness under inflammatory stress.


Assuntos
Deleção Cromossômica , Síndromes Mielodisplásicas , Haploinsuficiência , Células-Tronco Hematopoéticas/patologia , Humanos , Síndromes Mielodisplásicas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA