Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Comput Struct Biotechnol J ; 21: 5028-5038, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37867967

RESUMO

Cancer is a heterogeneous disease with a strong genetic component making it suitable for precision medicine approaches aimed at identifying the underlying molecular drivers within a tumour. Large scale population-level cancer sequencing consortia have identified many actionable mutations common across both cancer types and sub-types, resulting in an increasing number of successful precision medicine programs. Nonetheless, such approaches fail to consider the effects of mutations unique to an individual patient and may miss rare driver mutations, necessitating personalised approaches to driver-gene prioritisation. One approach is to quantify the functional importance of individual mutations in a single tumour based on how they affect the expression of genes in a gene interaction network (GIN). These GIN-based approaches can be broadly divided into those that utilise an existing reference GIN and those that construct de novo patient-specific GINs. These single-tumour approaches have several limitations that likely influence their results, such as use of reference cohort data, network choice, and approaches to mathematical approximation, and more research is required to evaluate the in vitro and in vivo applicability of their predictions. This review examines the current state of the art methods that identify driver genes in single tumours with a focus on GIN-based driver prioritisation.

2.
Br J Cancer ; 129(3): 475-485, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37365284

RESUMO

PURPOSE: To determine the safety and efficacy of PARP plus PD-L1 inhibition (olaparib + durvalumab, O + D) in patients with advanced solid, predominantly rare cancers harbouring homologous recombination repair (HRR) defects. PATIENTS AND METHODS: In total, 48 patients were treated with O + D, 16 with BRCA1/2 alterations (group 1) and 32 with other select HRR alterations (group 2). Overall, 32 (66%) patients had rare or less common cancers. The primary objective of this single-arm Phase II trial was a progression-free survival rate at 6 months (PFS6). Post hoc exploratory analyses were conducted on archival tumour tissue and serial bloods. RESULTS: The PFS6 rate was 35% and 38% with durable objective tumour responses (OTR) in 3(19%) and 3(9%) in groups 1 and 2, respectively. Rare cancers achieving an OTR included cholangiocarcinoma, perivascular epithelioid cell (PEComa), neuroendocrine, gallbladder and endometrial cancer. O + D was safe, with five serious adverse events related to the study drug(s) in 3 (6%) patients. A higher proportion of CD38 high B cells in the blood and higher CD40 expression in tumour was prognostic of survival. CONCLUSIONS: O + D demonstrated no new toxicity concerns and yielded a clinically meaningful PFS6 rate and durable OTRs across several cancers with HRR defects, including rare cancers.


Assuntos
Proteína BRCA1 , Neoplasias do Endométrio , Feminino , Humanos , Proteína BRCA1/genética , Reparo de DNA por Recombinação/genética , Proteína BRCA2/genética , Ftalazinas/efeitos adversos
3.
Genes (Basel) ; 14(3)2023 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-36981021

RESUMO

The microsatellite stable/epithelial-mesenchymal transition (MSS/EMT) subtype of gastric cancer represents a highly aggressive class of tumors associated with low rates of survival and considerably high probabilities of recurrence. In the era of precision medicine, the accurate and prompt diagnosis of tumors of this subtype is of vital importance. In this study, we used Weighted Gene Co-expression Network Analysis (WGCNA) to identify a differentially expressed co-expression module of mRNAs in EMT-type gastric tumors. Using network analysis and linear discriminant analysis, we identified mRNA motifs and microRNA-based models with strong prognostic and diagnostic relevance: three models comprised of (i) the microRNAs miR-199a-5p and miR-141-3p, (ii) EVC/EVC2/GLI3, and (iii) PDE2A/GUCY1A1/GUCY1B1 gene expression profiles distinguish EMT-type tumors from other gastric tumors with high accuracy (Area Under the Receiver Operating Characteristic Curve (AUC) = 0.995, AUC = 0.9742, and AUC = 0.9717; respectively). Additionally, the DMD/ITGA1/CAV1 motif was identified as the top motif with consistent relevance to prognosis (hazard ratio > 3). Molecular functions of the members of the identified models highlight the central roles of MAPK, Hh, and cGMP/cAMP signaling in the pathology of the EMT subtype of gastric cancer and underscore their potential utility in precision therapeutic approaches.


Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , Prognóstico , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Perfilação da Expressão Gênica
4.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36527429

RESUMO

Extensive investigation of gene fusions in cancer has led to the discovery of novel biomarkers and therapeutic targets. To date, most studies have neglected chromosomal rearrangement-independent fusion transcripts and complex fusion structures such as double or triple-hop fusions, and fusion-circRNAs. In this review, we untangle fusion-related terminology and propose a classification system involving both gene and transcript fusions. We highlight the importance of RNA-level fusions and how long-read sequencing approaches can improve detection and characterization. Moreover, we discuss novel bioinformatic tools to identify fusions in long-read sequencing data and strategies to experimentally validate and functionally characterize fusion transcripts.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Biologia Computacional , Fusão Gênica , RNA/genética
5.
Breast Cancer Res ; 24(1): 100, 2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36581993

RESUMO

BACKGROUND: After many years of neglect in the field of alternative splicing, the importance of intron retention (IR) in cancer has come into focus following landmark discoveries of aberrant IR patterns in cancer. Many solid and liquid tumours are associated with drastic increases in IR, and such patterns have been pursued as both biomarkers and therapeutic targets. Paradoxically, breast cancer (BrCa) is the only tumour type in which IR is reduced compared to adjacent normal breast tissue. METHODS: In this study, we have conducted a pan-cancer analysis of IR with emphasis on BrCa and its subtypes. We explored mechanisms that could cause aberrant and pathological IR and clarified why normal breast tissue has unusually high IR. RESULTS: Strikingly, we found that aberrantly decreasing IR in BrCa can be largely attributed to normal breast tissue having the highest occurrence of IR events compared to other healthy tissues. Our analyses suggest that low numbers of IR events in breast tumours are associated with poor prognosis, particularly in the luminal B subtype. Interestingly, we found that IR frequencies negatively correlate with cell proliferation in BrCa cells, i.e. rapidly dividing tumour cells have the lowest number of IR events. Aberrant RNA-binding protein expression and changes in tissue composition are among the causes of aberrantly decreasing IR in BrCa. CONCLUSIONS: Our results suggest that IR should be considered for therapeutic manipulation in BrCa patients with aberrantly low IR levels and that further work is needed to understand the cause and impact of high IR in other tumour types.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Íntrons/genética , Mama/patologia , Proliferação de Células
6.
Adv Exp Med Biol ; 1385: 1-22, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36352209

RESUMO

Since the discovery of microRNAs (miRNAs) in Caenorhabditis elegans, our understanding of their cellular function has progressed continuously. Today, we have a good understanding of miRNA-mediated gene regulation, miRNA-mediated cross talk between genes including competing endogenous RNAs, and miRNA-mediated signaling transduction both in normal human physiology and in diseases.Besides, these noncoding RNAs have shown their value for clinical applications, especially in an oncological context. They can be used as reliable biomarkers for cancer diagnosis and prognosis and attract increasing attention as potential therapeutic targets. Many achievements made in the miRNA field are based on joint efforts from computational and molecular biologists. Systems biology approaches, which integrate computational and experimental methods, have played a fundamental role in uncovering the cellular functions of miRNAs.In this chapter, we review and discuss the role of miRNAs in oncology from a system biology perspective. We first describe biological facts about miRNA genetics and function. Next, we discuss the role of miRNAs in cancer progression and review the application of miRNAs in cancer diagnostics and therapy. Finally, we elaborate on the role that miRNAs play in cancer gene regulatory networks. Taken together, we emphasize the importance of systems biology approaches in our continued efforts to study miRNA cancer regulation.


Assuntos
MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , Biologia de Sistemas/métodos , Redes Reguladoras de Genes , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia , Regulação da Expressão Gênica , Biologia Computacional/métodos
7.
Nucleic Acids Res ; 50(20): 11563-11579, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36354002

RESUMO

Dynamic intron retention (IR) in vertebrate cells is of widespread biological importance. Aberrant IR is associated with numerous human diseases including several cancers. Despite consistent reports demonstrating that intrinsic sequence features can help introns evade splicing, conflicting findings about cell type- or condition-specific IR regulation by trans-regulatory and epigenetic mechanisms demand an unbiased and systematic analysis of IR in a controlled experimental setting. We integrated matched mRNA sequencing (mRNA-Seq), whole-genome bisulfite sequencing (WGBS), nucleosome occupancy methylome sequencing (NOMe-Seq) and chromatin immunoprecipitation sequencing (ChIP-Seq) data from primary human myeloid and lymphoid cells. Using these multi-omics data and machine learning, we trained two complementary models to determine the role of epigenetic factors in the regulation of IR in cells of the innate immune system. We show that increased chromatin accessibility, as revealed by nucleosome-free regions, contributes substantially to the retention of introns in a cell-specific manner. We also confirm that intrinsic characteristics of introns are key for them to evade splicing. This study suggests an important role for chromatin architecture in IR regulation. With an increasing appreciation that pathogenic alterations are linked to RNA processing, our findings may provide useful insights for the development of novel therapeutic approaches that target aberrant splicing.


Assuntos
Diferenciação Celular , Cromatina , Íntrons , Humanos , Cromatina/genética , Íntrons/genética , Nucleossomos/genética , RNA Mensageiro
8.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34471925

RESUMO

It is becoming evident that holistic perspectives toward cancer are crucial in deciphering the overwhelming complexity of tumors. Single-layer analysis of genome-wide data has greatly contributed to our understanding of cellular systems and their perturbations. However, fundamental gaps in our knowledge persist and hamper the design of effective interventions. It is becoming more apparent than ever, that cancer should not only be viewed as a disease of the genome but as a disease of the cellular system. Integrative multilayer approaches are emerging as vigorous assets in our endeavors to achieve systemic views on cancer biology. Herein, we provide a comprehensive review of the approaches, methods and technologies that can serve to achieve systemic perspectives of cancer. We start with genome-wide single-layer approaches of omics analyses of cellular systems and move on to multilayer integrative approaches in which in-depth descriptions of proteogenomics and network-based data analysis are provided. Proteogenomics is a remarkable example of how the integration of multiple levels of information can reduce our blind spots and increase the accuracy and reliability of our interpretations and network-based data analysis is a major approach for data interpretation and a robust scaffold for data integration and modeling. Overall, this review aims to increase cross-field awareness of the approaches and challenges regarding the omics-based study of cancer and to facilitate the necessary shift toward holistic approaches.


Assuntos
Neoplasias , Proteogenômica , Genoma , Humanos , Metabolômica/métodos , Neoplasias/genética , Reprodutibilidade dos Testes , Análise de Sistemas
9.
Int J Mol Sci ; 22(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34830054

RESUMO

Chimeric RNAs are often associated with chromosomal rearrangements in cancer. In addition, they are also widely detected in normal tissues, contributing to transcriptomic complexity. Despite their prevalence, little is known about the characteristics and functions of chimeric RNAs. Here, we examine the genetic structure and biological roles of CLEC12A-MIR223HG, a novel chimeric transcript produced by the fusion of the cell surface receptor CLEC12A and the miRNA-223 host gene (MIR223HG), first identified in chronic myeloid leukemia (CML) patients. Surprisingly, we observed that CLEC12A-MIR223HG is not just expressed in CML, but also in a variety of normal tissues and cell lines. CLEC12A-MIR223HG expression is elevated in pro-monocytic cells resistant to chemotherapy and during monocyte-to-macrophage differentiation. We observed that CLEC12A-MIR223HG is a product of trans-splicing rather than a chromosomal rearrangement and that transcriptional activation of CLEC12A with the CRISPR/Cas9 Synergistic Activation Mediator (SAM) system increases CLEC12A-MIR223HG expression. CLEC12A-MIR223HG translates into a chimeric protein, which largely resembles CLEC12A but harbours an altered C-type lectin domain altering key disulphide bonds. These alterations result in differences in post-translational modifications, cellular localization, and protein-protein interactions. Taken together, our observations support a possible involvement of CLEC12A-MIR223HG in the regulation of CLEC12A function. Our workflow also serves as a template to study other uncharacterized chimeric RNAs.


Assuntos
Fusão Gênica , Lectinas Tipo C/genética , Leucemia Mieloide/genética , MicroRNAs/genética , Proteínas Mutantes Quiméricas/genética , Receptores Mitogênicos/genética , Trans-Splicing , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Citarabina/farmacologia , Humanos , Lectinas Tipo C/metabolismo , Leucemia Mieloide/metabolismo , MicroRNAs/metabolismo , Proteínas Mutantes Quiméricas/metabolismo , Receptores Mitogênicos/metabolismo , Ativação Transcricional
10.
Cell Mol Life Sci ; 78(23): 7519-7536, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34657170

RESUMO

CCCTC-binding factor (CTCF) plays fundamental roles in transcriptional regulation and chromatin architecture maintenance. CTCF is also a tumour suppressor frequently mutated in cancer, however, the structural and functional impact of mutations have not been examined. We performed molecular and structural characterisation of five cancer-specific CTCF missense zinc finger (ZF) mutations occurring within key intra- and inter-ZF residues. Functional characterisation of CTCF ZF mutations revealed a complete (L309P, R339W, R377H) or intermediate (R339Q) abrogation as well as an enhancement (G420D) of the anti-proliferative effects of CTCF. DNA binding at select sites was disrupted and transcriptional regulatory activities abrogated. Molecular docking and molecular dynamics confirmed that mutations in residues specifically contacting DNA bases or backbone exhibited loss of DNA binding. However, R339Q and G420D were stabilised by the formation of new primary DNA bonds, contributing to gain-of-function. Our data confirm that a spectrum of loss-, change- and gain-of-function impacts on CTCF zinc fingers are observed in cell growth regulation and gene regulatory activities. Hence, diverse cellular phenotypes of mutant CTCF are clearly explained by examining structure-function relationships.


Assuntos
Fator de Ligação a CCCTC/química , Fator de Ligação a CCCTC/metabolismo , Regulação Neoplásica da Expressão Gênica , Mutação , Neoplasias/patologia , Fenótipo , Dedos de Zinco , Apoptose , Fator de Ligação a CCCTC/genética , Proliferação de Células , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Regiões Promotoras Genéticas , Relação Estrutura-Atividade , Células Tumorais Cultivadas
11.
RNA Biol ; 18(1): 93-103, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32816606

RESUMO

CTCF is a master regulator of gene transcription and chromatin organisation with occupancy at thousands of DNA target sites genome-wide. While CTCF is essential for cell survival, CTCF haploinsufficiency is associated with tumour development and hypermethylation. Increasing evidence demonstrates CTCF as a key player in several mechanisms regulating alternative splicing (AS), however, the genome-wide impact of Ctcf dosage on AS has not been investigated. We examined the effect of Ctcf haploinsufficiency on gene expression and AS in five tissues from Ctcf hemizygous (Ctcf+/-) mice. Reduced Ctcf levels caused distinct tissue-specific differences in gene expression and AS in all tissues. An increase in intron retention (IR) was observed in Ctcf+/- liver and kidney. In liver, this specifically impacted genes associated with cytoskeletal organisation, splicing and metabolism. Strikingly, most differentially retained introns were short, with a high GC content and enriched in Ctcf binding sites in their proximal upstream genomic region. This study provides new insights into the effects of CTCF haploinsufficiency on organ transcriptomes and the role of CTCF in AS regulation.


Assuntos
Processamento Alternativo , Fator de Ligação a CCCTC/genética , Regulação da Expressão Gênica , Haploinsuficiência , Íntrons , Animais , Sítios de Ligação , Fator de Ligação a CCCTC/metabolismo , Genótipo , Camundongos , Camundongos Knockout , Modelos Biológicos , Especificidade de Órgãos , Ligação Proteica , Transcriptoma
12.
Cancer Res ; 81(4): 779-789, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33046441

RESUMO

Intron retention (IR) in cancer was for a long time overlooked by the scientific community, as it was previously considered to be an artifact of a dysfunctional spliceosome. Technological advancements made in the last decade offer unique opportunities to explore the role of IR as a widespread phenomenon that contributes to the transcriptional diversity of many cancers. Numerous studies in cancer have shed light on dysregulation of cellular mechanisms that lead to aberrant and pathologic IR. IR is not merely a mechanism of gene regulation, but rather it can mediate cancer pathogenesis and therapeutic resistance in various human diseases. The burden of IR in cancer is governed by perturbations to mechanisms known to regulate this phenomenon and include epigenetic variation, mutations within the gene body, and splicing factor dysregulation. This review summarizes possible causes for aberrant IR and discusses the role of IR in therapy or as a consequence of disease treatment. As neoepitopes originating from retained introns can be presented on the cancer cell surface, the development of personalized cancer vaccines based on IR-derived neoepitopes should be considered. Ultimately, a deeper comprehension about the origins and consequences of aberrant IR may aid in the development of such personalized cancer vaccines.


Assuntos
Processamento Alternativo/genética , Íntrons/genética , Neoplasias/genética , Neoplasias/terapia , Animais , Vacinas Anticâncer/genética , Vacinas Anticâncer/uso terapêutico , Epigênese Genética/fisiologia , Humanos , Medicina de Precisão/métodos , Medicina de Precisão/tendências , Spliceossomos/genética , Spliceossomos/metabolismo
13.
Cancers (Basel) ; 12(12)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322625

RESUMO

Vast transcriptomics and epigenomics changes are characteristic of human cancers, including leukaemia. At remission, we assume that these changes normalise so that omics-profiles resemble those of healthy individuals. However, an in-depth transcriptomic and epigenomic analysis of cancer remission has not been undertaken. A striking exemplar of targeted remission induction occurs in chronic myeloid leukaemia (CML) following tyrosine kinase inhibitor (TKI) therapy. Using RNA sequencing and whole-genome bisulfite sequencing, we profiled samples from chronic-phase CML patients at diagnosis and remission and compared these to healthy donors. Remarkably, our analyses revealed that abnormal splicing distinguishes remission samples from normal controls. This phenomenon is independent of the TKI drug used and in striking contrast to the normalisation of gene expression and DNA methylation patterns. Most remarkable are the high intron retention (IR) levels that even exceed those observed in the diagnosis samples. Increased IR affects cell cycle regulators at diagnosis and splicing regulators at remission. We show that aberrant splicing in CML is associated with reduced expression of specific splicing factors, histone modifications and reduced DNA methylation. Our results provide novel insights into the changing transcriptomic and epigenomic landscapes of CML patients during remission. The conceptually unanticipated observation of widespread aberrant alternative splicing after remission induction warrants further exploration. These results have broad implications for studying CML relapse and treating minimal residual disease.

14.
Endocr Connect ; 9(10): 1028-1041, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33112841

RESUMO

Programmed cell death-ligand 1 (PD-L1) has recently been shown to play a role in the regulation of epithelial-to-mesenchymal transition (EMT); however, the relationship between PD-L1 expression, EMT and the inflammatory tumour microenvironment has yet to be investigated in thyroid cancer. To address this issue, we examined the expression of CD8, PD-L1 and the EMT markers E-cadherin and vimentin in a cohort of 74 papillary thyroid cancer (PTC) patients and investigated the association of these with clinicopathologic characteristics and disease-free survival (DFS). The relationship between PD-L1 and EMT was further examined in three thyroid cancer cell lines via Western blot and live cell imaging. In order to expand our in vitro findings, the normalised gene expression profiles of 516 thyroid cancer patients were retrieved and analysed from The Cancer Genome Atlas (TCGA). PD-L1 positivity was significantly higher in PTC patients exhibiting a mesenchymal phenotype (P = 0.012). Kaplan-Meier analysis revealed that PD-L1 (P = 0.045), CD8 (P = 0.038) and EMT status (P = 0.038) were all significant predictors for DFS. Sub-analysis confirmed that the poorest DFS was evident in PD-L1 positive patients with EMT features and negative CD8 expression (P < 0.0001). IFN-γ treatment induced upregulation of PD-L1 and significantly promoted an EMT phenotype in two thyroid cancer cell lines. Our findings suggest that PD-L1 signalling may play a role in stimulating EMT in thyroid cancer. EMT, CD8 and PD-L1 expression may serve as valuable predictive biomarkers in patients with PTC.

15.
Cancers (Basel) ; 12(8)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731355

RESUMO

BACKGROUND: Survival from melanoma is strongly related to patient sex, with females having a survival rate almost twice that of males. Many explanations have been proposed but have not withstood critical scrutiny. Prior analysis of different cancers with a sex bias has identified six X-linked genes that escape X chromosome inactivation in females and are, therefore, potentially involved in sex differences in survival. Four of the genes are well-known epigenetic regulators that are known to influence the expression of hundreds of other genes and signaling pathways in cancer. METHODS: Survival and interaction analysis were performed on the skin cutaneous melanoma (SKCM) cohort in The Cancer Genome Atlas (TCGA), comparing high vs. low expression of KDM6A, ATRX, KDM5C, and DDX3X. The Leeds melanoma cohort (LMC) on 678 patients with primary melanoma was used as a validation cohort. RESULTS: Analysis of TCGA data revealed that two of these genes-KDM6A and ATRX-were associated with improved survival from melanoma. Tumoral KDM6A was expressed at higher levels in females and was associated with inferred lymphoid infiltration into melanoma. Gene set analysis of high KDM6A showed strong associations with immune responses and downregulation of genes associated with Myc and other oncogenic pathways. The LMC analysis confirmed the prognostic significance of KDM6A and its interaction with EZH2 but also revealed the expression of KDM5C and DDX3X to be prognostically significant. The analysis also confirmed a partial correlation of KDM6A with immune tumor infiltrates. CONCLUSION: When considered together, the results from these two series are consistent with the involvement of X-linked epigenetic regulators in the improved survival of females from melanoma. The identification of gene signatures associated with their expression presents insights into the development of new treatment initiatives but provides a basis for exploration in future studies.

16.
Nucleic Acids Res ; 48(12): 6513-6529, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32449925

RESUMO

Monocytes and macrophages are essential components of the innate immune system. Herein, we report that intron retention (IR) plays an important role in the development and function of these cells. Using Illumina mRNA sequencing, Nanopore direct cDNA sequencing and proteomics analysis, we identify IR events that affect the expression of key genes/proteins involved in macrophage development and function. We demonstrate that decreased IR in nuclear-detained mRNA is coupled with increased expression of genes encoding regulators of macrophage transcription, phagocytosis and inflammatory signalling, including ID2, IRF7, ENG and LAT. We further show that this dynamic IR program persists during the polarisation of resting macrophages into activated macrophages. In the presence of proinflammatory stimuli, intron-retaining CXCL2 and NFKBIZ transcripts are rapidly spliced, enabling timely expression of these key inflammatory regulators by macrophages. Our study provides novel insights into the molecular factors controlling vital regulators of the innate immune response.


Assuntos
Ativação de Macrófagos , Macrófagos/imunologia , Splicing de RNA , RNA Mensageiro/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Cultivadas , Quimiocina CXCL2/genética , Quimiocina CXCL2/metabolismo , Endoglina/genética , Endoglina/metabolismo , Humanos , Proteína 2 Inibidora de Diferenciação/genética , Proteína 2 Inibidora de Diferenciação/metabolismo , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Íntrons , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , RNA Mensageiro/metabolismo , Células THP-1
17.
Cells ; 8(8)2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31430887

RESUMO

Colorectal cancer (CRC) results from a transformation of colonic epithelial cells into adenocarcinoma cells due to genetic and epigenetic instabilities, alongside remodelling of the surrounding stromal tumour microenvironment. Epithelial-specific epigenetic variations escorting this process include chromatin remodelling, histone modifications and aberrant DNA methylation, which influence gene expression, alternative splicing and function of non-coding RNA. In this review, we first highlight epigenetic modulators, modifiers and mediators in CRC, then we elaborate on causes and consequences of epigenetic alterations in CRC pathogenesis alongside an appraisal of the complex feedback mechanisms realized through alternative splicing and non-coding RNA regulation. An emphasis in our review is put on how this intricate network of epigenetic and post-transcriptional gene regulation evolves during the initiation, progression and metastasis formation in CRC.


Assuntos
Adenocarcinoma/genética , Neoplasias Colorretais/genética , Epigênese Genética/genética , RNA não Traduzido/genética , Microambiente Tumoral/genética , Processamento Alternativo , Animais , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina/genética , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Histonas/genética , Humanos , Camundongos , Processamento de Proteína Pós-Traducional
18.
Nucleic Acids Res ; 47(15): 7753-7766, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31340025

RESUMO

MicroRNAs (miRNAs) are short, noncoding RNAs that regulate gene expression by suppressing mRNA translation and reducing mRNA stability. A miRNA can potentially bind many mRNAs, thereby affecting the expression of oncogenes and tumor suppressor genes as well as the activity of whole pathways. The promise of miRNA therapeutics in cancer is to harness this evolutionarily conserved mechanism for the coordinated regulation of gene expression, and thus restoring a normal cell phenotype. However, the promiscuous binding of miRNAs can provoke unwanted off-target effects, which are usually caused by high-dose single-miRNA treatments. Thus, it is desirable to develop miRNA therapeutics with increased specificity and efficacy. To achieve that, we propose the concept of miRNA cooperativity in order to exert synergistic repression on target genes, thus lowering the required total amount of miRNAs. We first review miRNA therapies in clinical application. Next, we summarize the knowledge on the molecular mechanism and biological function of miRNA cooperativity and discuss its application in cancer therapies. We then propose and discuss a systems biology approach to investigate miRNA cooperativity for the clinical setting. Altogether, we point out the potential of miRNA cooperativity to reduce off-target effects and to complement conventional, targeted, or immune-based therapies for cancer.


Assuntos
Antineoplásicos/uso terapêutico , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias/terapia , RNA Neoplásico/genética , Biologia de Sistemas/métodos , Antagomirs/genética , Antagomirs/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Quimioterapia Adjuvante/métodos , Redes Reguladoras de Genes , Humanos , MicroRNAs/agonistas , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Oligorribonucleotídeos/genética , Oligorribonucleotídeos/metabolismo , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/agonistas , RNA Neoplásico/antagonistas & inibidores , RNA Neoplásico/metabolismo , Bibliotecas de Moléculas Pequenas/uso terapêutico , Proteínas Supressoras de Tumor/agonistas , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
19.
Bioinformatics ; 35(2): 352-360, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30649349

RESUMO

Motivation: Extracellular vesicles (EVs), including exosomes and microvesicles, are potent and clinically valuable tools for early diagnosis, prognosis and potentially the targeted treatment of cancer. The content of EVs is closely related to the type and status of the EV-secreting cell. Circulating exosomes are a source of stable RNAs including mRNAs, microRNAs and long non-coding RNAs (lncRNAs). Results: This review outlines the links between EVs, lncRNAs and cancer. We highlight communication networks involving the tumor microenvironment, the immune system and metastasis. We show examples supporting the value of exosomal lncRNAs as cancer biomarkers and therapeutic targets. We demonstrate how a system biology approach can be used to model cell-cell communication via exosomal lncRNAs and to simulate effects of therapeutic interventions. In addition, we introduce algorithms and bioinformatics resources for the discovery of tumor-specific lncRNAs and tools that are applied to determine exosome content and lncRNA function. Finally, this review provides a comprehensive collection and guide to databases for exosomal lncRNAs. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Exossomos/genética , Neoplasias/genética , RNA Longo não Codificante/genética , Humanos , MicroRNAs/genética , Microambiente Tumoral
20.
Sci Rep ; 8(1): 7264, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29739970

RESUMO

Myelopoiesis involves differentiation of hematopoietic stem cells to cellular populations that are restricted in their self-renewal capacity, beginning with the common myeloid progenitor (CMP) and leading to mature cells including monocytes and granulocytes. This complex process is regulated by various extracellular and intracellular signals including microRNAs (miRNAs). We characterised the miRNA profile of human CD34+CD38+ myeloid progenitor cells, and mature monocytes and granulocytes isolated from cord blood using TaqMan Low Density Arrays. We identified 19 miRNAs that increased in both cell types relative to the CMP and 27 that decreased. miR-125b and miR-10a were decreased by 10-fold and 100-fold respectively in the mature cells. Using in vitro granulopoietic differentiation of human CD34+ cells we show that decreases in both miR-125b and miR-10a correlate with a loss of CD34 expression and gain of CD11b and CD15 expression. Candidate target mRNAs were identified by co-incident predictions between the miRanda algorithm and genes with increased expression during differentiation. Using luciferase assays we confirmed MCL1 and FUT4 as targets of miR-125b and the transcription factor KLF4 as a target of miR-10a. Together, our data identify miRNAs with differential expression during myeloid development and reveal some relevant miRNA-target pairs that may contribute to physiological differentiation.


Assuntos
Fatores de Transcrição Kruppel-Like/genética , MicroRNAs/genética , Mielopoese/genética , ADP-Ribosil Ciclase 1/genética , Antígenos CD34/genética , Diferenciação Celular/genética , Sangue Fetal/citologia , Sangue Fetal/metabolismo , Fucosiltransferases/genética , Regulação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Granulócitos/citologia , Granulócitos/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Monócitos/citologia , Monócitos/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA