Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(23): e202302490, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37014271

RESUMO

Lanthipeptides are ribosomally-synthesized natural products from bacteria featuring stable thioether-crosslinks and various bioactivities. Herein, we report on a new clade of tricyclic class-IV lanthipeptides with curvocidin from Thermomonospora curvata as its first representative. We obtained crystal structures of the corresponding lanthipeptide synthetase CuvL that showed a circular arrangement of its kinase, lyase and cyclase domains, forming a central reaction chamber for the iterative substrate processing involving nine catalytic steps. The combination of experimental data and artificial intelligence-based structural models identified the N-terminal subdomain of the kinase domain as the primary site of substrate recruitment. The ribosomal precursor peptide of curvocidin employs an amphipathic α-helix in its leader region as an anchor to CuvL, while its substrate core shuttles within the central reaction chamber. Our study thus reveals general principles of domain organization and substrate recruitment of class-IV and class-III lanthipeptide synthetases.


Assuntos
Inteligência Artificial , Ligases , Ligases/química , Peptídeos/química
2.
Chembiochem ; 23(20): e202200345, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-35995730

RESUMO

Microviridins are a prominent family of ribosomally synthesized and posttranslationally modified peptides (RiPPs) featuring characteristic lactone and lactam rings. Their unusual cage-like architecture renders them highly potent serine protease inhibitors of which individual variants specifically inhibit different types of proteases of pharmacological interest. While posttranslational modifications are key for the stability and bioactivity of RiPPs, additional attractive properties can be introduced by functional tags. To date - although highly desirable - no method has been reported to incorporate functional tags in microviridin scaffolds or the overarching class of graspetides. In this study, a chemoenzymatic in vitro platform is used to introduce functional tags in various microviridin variants yielding biotinylated, dansylated or propargylated congeners. This straightforward approach paves the way for customized protease inhibitors with built-in functionalities that can help to unravel the still elusive ecological roles and targets of this remarkable class of compounds and to foster applications based on protease inhibition.


Assuntos
Peptídeos , Inibidores de Serina Proteinase , Peptídeos/química , Processamento de Proteína Pós-Traducional , Peptídeo Hidrolases , Lactamas , Lactonas
3.
Angew Chem Int Ed Engl ; 59(38): 16777-16785, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32533616

RESUMO

The recently discovered strongly anti-Gram-positive lipolanthines represent a new group of lipidated, ribosomally synthesized and post-translationally modified peptides (RiPPs). They are bicyclic octapeptides with a central quaternary carbon atom (avionin), which is installed through the cooperative action of the class-III lanthipeptide synthetase MicKC and the cysteine decarboxylase MicD. Genome mining efforts indicate a widespread distribution and unprecedented biosynthetic diversity of lipolanthine gene clusters, combining elements of RiPPs, polyketide and non-ribosomal peptide biosynthesis. Utilizing NMR spectroscopy, we show that a (θxx)θxxθxxθ (θ=L, I, V, M or T) motif, which is conserved in the leader peptides of all class-III and -IV lanthipeptides, forms an amphipathic α-helix in MicA that destines the peptide substrate for enzymatic processing. Our results provide general rules of substrate recruitment and enzymatic regulation during lipolanthine maturation. These insights will facilitate future efforts to rationally design new lanthipeptide scaffolds with antibacterial potency.


Assuntos
Carboxiliases/metabolismo , Lipopeptídeos/biossíntese , Peptídeo Sintases/metabolismo , Ribossomos/metabolismo , Carboxiliases/química , Lipopeptídeos/química , Lipopeptídeos/genética , Peptídeo Sintases/química , Conformação Proteica em alfa-Hélice , Ribossomos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA