Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dev Biol ; 462(2): 197-207, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32197890

RESUMO

Three-dimensional (3D) organoid models derived from human pluripotent stem cells provide a platform for studying human development and understanding disease mechanisms. Most studies that examine biallelic inactivation of the cell cycle regulator Retinoblastoma 1 (RB1) and the link to retinoblastoma is in mice, however, less is known regarding the pathophysiological role of RB1 during human retinal development. To study the role of RB1 in early human retinal development and tumor formation, we generated retinal organoids from CRISPR/Cas9-derived RB1-null human embryonic stem cells (hESCs). We showed that RB is abundantly expressed in retinal progenitor cells in retinal organoids and loss of RB1 promotes S-phase entry. Furthermore, loss of RB1 resulted in widespread apoptosis and reduced the number of photoreceptor, ganglion, and bipolar cells. Interestingly, RB1 mutation in retinal organoids did not result in retinoblastoma formation in vitro or in the vitreous body of NOD/SCID immunodeficient mice. Together, our work identifies a crucial function for RB1 in human retinal development and suggests that RB1 deletion alone is not sufficient for tumor development, at least in human retinal organoids.


Assuntos
Células-Tronco Embrionárias Humanas/metabolismo , Retina/embriologia , Proteínas de Ligação a Retinoblastoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Apoptose/fisiologia , Sistemas CRISPR-Cas , Diferenciação Celular/genética , Células-Tronco Embrionárias Humanas/citologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Organoides/citologia , Células-Tronco Pluripotentes/citologia , Retina/fisiologia , Células Ganglionares da Retina/metabolismo , Neoplasias da Retina/metabolismo , Retinoblastoma/metabolismo , Proteínas de Ligação a Retinoblastoma/fisiologia , Ubiquitina-Proteína Ligases/fisiologia
2.
Circ Res ; 122(6): e20-e33, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29362227

RESUMO

RATIONALE: The regulator of calcineurin 1 (RCAN1) inhibits CN (calcineurin), a Ca2+-activated protein phosphatase important in cardiac remodeling. In humans, RCAN1 is located on chromosome 21 in proximity to the Down syndrome critical region. The hearts and brains of Rcan1 KO mice are more susceptible to damage from ischemia/reperfusion (I/R); however, the underlying cause is not known. OBJECTIVE: Mitochondria are key mediators of I/R damage. The goal of these studies was to determine the impact of RCAN1 on mitochondrial dynamics and function. METHODS AND RESULTS: Using both neonatal and isolated adult cardiomyocytes, we show that, when RCAN1 is depleted, the mitochondrial network is more fragmented because of increased CN-dependent activation of the fission protein, DRP1 (dynamin-1-like). Mitochondria in RCAN1-depleted cardiomyocytes have reduced membrane potential, O2 consumption, and generation of reactive oxygen species, as well as a reduced capacity for mitochondrial Ca2+ uptake. RCAN1-depleted cardiomyocytes were more sensitive to I/R; however, pharmacological inhibition of CN, DRP1, or CAPN (calpains; Ca2+-activated proteases) restored protection, suggesting that in the absence of RCAN1, CAPN-mediated damage after I/R is greater because of a decrease in the capacity of mitochondria to buffer cytoplasmic Ca2+. Increasing RCAN1 levels by adenoviral infection was sufficient to enhance fusion and confer protection from I/R. To examine the impact of more modest, and biologically relevant, increases in RCAN1, we compared the mitochondrial network in induced pluripotent stem cells derived from individuals with Down syndrome to that of isogenic, disomic controls. Mitochondria were more fused, and O2 consumption was greater in the trisomic induced pluripotent stem cells; however, coupling efficiency and metabolic flexibility were compromised compared with disomic induced pluripotent stem cells. Depletion of RCAN1 from trisomic induced pluripotent stem cells was sufficient to normalize mitochondrial dynamics and function. CONCLUSIONS: RCAN1 helps maintain a more interconnected mitochondrial network, and maintaining appropriate RCAN1 levels is important to human health and disease.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Mitocôndrias Cardíacas/metabolismo , Dinâmica Mitocondrial , Proteínas Musculares/genética , Traumatismo por Reperfusão Miocárdica/genética , Animais , Proteínas de Ligação ao Cálcio , Calpaína/genética , Calpaína/metabolismo , Linhagem Celular , Células Cultivadas , Dinaminas/genética , Dinaminas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/metabolismo , Oxigênio/metabolismo , Ratos , Ratos Sprague-Dawley
3.
J Inherit Metab Dis ; 41(2): 231-238, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29110178

RESUMO

Fabry disease is a glycosphingolipidosis caused by deficient activity of α-galactosidase A; it is one of a few diseases that are associated with priapism, an abnormal prolonged erection of the penis. The goal of this study was to investigate the pathogenesis of Fabry disease-associated priapism in a mouse model of the disease. We found that Fabry mice develop late-onset priapism. Neuronal nitric oxide synthase (nNOS), which was predominantly present as the 120-kDa N-terminus-truncated form, was significantly upregulated in the penis of 18-month-old Fabry mice compared to wild type controls (~fivefold). Endothelial NOS (eNOS) was also upregulated (~twofold). NO level in penile tissues of Fabry mice was significantly higher than wild type controls at 18 months. Gene transfer-mediated enzyme replacement therapy reversed abnormal nNOS expression in the Fabry mouse penis. The penile nNOS level was restored by antiandrogen treatment, suggesting that hyperactive androgen receptor signaling in Fabry mice may contribute to nNOS upregulation. However, the phosphodiesterase-5A expression level and the adenosine content in the penis, which are known to play roles in the development of priapism in other etiologies, were unchanged in Fabry mice. In conclusion, these data suggested that increased nNOS (and probably eNOS) content and the consequential elevated NO production and high arterial blood flow in the penis may be the underlying mechanism of priapism in Fabry mice. Furthermore, in combination with previous findings, this study suggested that regulation of NOS expression is susceptible to α-galactosidase A deficiency, and this may represent a general pathogenic mechanism of Fabry vasculopathy.


Assuntos
Doença de Fabry/complicações , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Ereção Peniana , Pênis/enzimologia , Priapismo/etiologia , Animais , Modelos Animais de Doenças , Terapia de Reposição de Enzimas/métodos , Doença de Fabry/enzimologia , Doença de Fabry/fisiopatologia , Doença de Fabry/terapia , Terapia Genética/métodos , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Pênis/fisiopatologia , Priapismo/enzimologia , Priapismo/fisiopatologia , Priapismo/terapia , Fluxo Sanguíneo Regional , Transdução de Sinais , Regulação para Cima , alfa-Galactosidase/biossíntese , alfa-Galactosidase/genética
4.
Development ; 144(6): 1025-1034, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28087635

RESUMO

The tumor suppressor retinoblastoma protein (RB) regulates S-phase cell cycle entry via E2F transcription factors. Knockout (KO) mice have shown that RB plays roles in cell migration, differentiation and apoptosis, in developing and adult brain. In addition, the RB family is required for self-renewal and survival of human embryonic stem cells (hESCs). Since little is known about the role of RB in human brain development, we investigated its function in cerebral organoids differentiated from gene-edited hESCs lacking RB. We show that RB is abundantly expressed in neural stem and progenitor cells in organoids at 15 and 28 days of culture. RB loss promoted S-phase entry in DCX+ cells and increased apoptosis in Sox2+ neural stem and progenitor cells, and in DCX+ and Tuj1+ neurons. Associated with these cell cycle and pro-apoptotic effects, we observed increased CCNA2 and BAX gene expression, respectively. Moreover, we observed aberrant Tuj1+ neuronal migration in RB-KO organoids and upregulation of the gene encoding VLDLR, a receptor important in reelin signaling. Corroborating the results in RB-KO organoids in vitro, we observed ectopically localized Tuj1+ cells in RB-KO teratomas grown in vivo Taken together, these results identify crucial functions for RB in the cerebral organoid model of human brain development.


Assuntos
Movimento Celular , Cérebro/citologia , Neurônios/citologia , Organoides/citologia , Organoides/metabolismo , Proteína do Retinoblastoma/metabolismo , Morte Celular , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Proteína Duplacortina , Células-Tronco Embrionárias/citologia , Deleção de Genes , Técnicas de Inativação de Genes , Humanos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Proteína Reelina , Fase S
5.
Sci Signal ; 9(422): ra34, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27048565

RESUMO

Altering chromatin structure through histone posttranslational modifications has emerged as a key driver of transcriptional responses in cells. Modulation of these transcriptional responses by pharmacological inhibition of class I histone deacetylases (HDACs), a group of chromatin remodeling enzymes, has been successful in blocking the growth of some cancer cell types. These inhibitors also attenuate the pathogenesis of pathological cardiac remodeling by blunting and even reversing pathological hypertrophy. The mechanistic target of rapamycin (mTOR) is a critical sensor and regulator of cell growth that, as part of mTOR complex 1 (mTORC1), drives changes in protein synthesis and metabolism in both pathological and physiological hypertrophy. We demonstrated through pharmacological and genetic methods that inhibition of class I HDACs suppressed pathological cardiac hypertrophy through inhibition of mTOR activity. Mice genetically silenced for HDAC1 and HDAC2 had a reduced hypertrophic response to thoracic aortic constriction (TAC) and showed reduced mTOR activity. We determined that the abundance of tuberous sclerosis complex 2 (TSC2), an mTOR inhibitor, was increased through a transcriptional mechanism in cardiomyocytes when class I HDACs were inhibited. In neonatal rat cardiomyocytes, loss of TSC2 abolished HDAC-dependent inhibition of mTOR activity, and increased expression of TSC2 was sufficient to reduce hypertrophy in response to phenylephrine. These findings point to mTOR and TSC2-dependent control of mTOR as critical components of the mechanism by which HDAC inhibitors blunt pathological cardiac growth. These results also suggest a strategy to modulate mTOR activity and facilitate the translational exploitation of HDAC inhibitors in heart disease.


Assuntos
Cardiomegalia/metabolismo , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Animais Recém-Nascidos , Western Blotting , Cardiomegalia/genética , Linhagem Celular , Células Cultivadas , Histona Desacetilase 1/genética , Histona Desacetilase 2/genética , Inibidores de Histona Desacetilases/farmacologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Peptídeos Cíclicos/farmacologia , Interferência de RNA , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética
6.
Circulation ; 133(17): 1668-87, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-26984939

RESUMO

BACKGROUND: The clinical use of doxorubicin is limited by cardiotoxicity. Histopathological changes include interstitial myocardial fibrosis and the appearance of vacuolated cardiomyocytes. Whereas dysregulation of autophagy in the myocardium has been implicated in a variety of cardiovascular diseases, the role of autophagy in doxorubicin cardiomyopathy remains poorly defined. METHODS AND RESULTS: Most models of doxorubicin cardiotoxicity involve intraperitoneal injection of high-dose drug, which elicits lethargy, anorexia, weight loss, and peritoneal fibrosis, all of which confound the interpretation of autophagy. Given this, we first established a model that provokes modest and progressive cardiotoxicity without constitutional symptoms, reminiscent of the effects seen in patients. We report that doxorubicin blocks cardiomyocyte autophagic flux in vivo and in cardiomyocytes in culture. This block was accompanied by robust accumulation of undegraded autolysosomes. We go on to localize the site of block as a defect in lysosome acidification. To test the functional relevance of doxorubicin-triggered autolysosome accumulation, we studied animals with diminished autophagic activity resulting from haploinsufficiency for Beclin 1. Beclin 1(+/-) mice exposed to doxorubicin were protected in terms of structural and functional changes within the myocardium. Conversely, animals overexpressing Beclin 1 manifested an amplified cardiotoxic response. CONCLUSIONS: Doxorubicin blocks autophagic flux in cardiomyocytes by impairing lysosome acidification and lysosomal function. Reducing autophagy initiation protects against doxorubicin cardiotoxicity.


Assuntos
Autofagia/efeitos dos fármacos , Doxorrubicina/farmacologia , Lisossomos/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Animais , Antibióticos Antineoplásicos , Autofagia/fisiologia , Linhagem Celular , Células Cultivadas , Humanos , Concentração de Íons de Hidrogênio , Lisossomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Ratos , Ratos Sprague-Dawley
7.
J Investig Med ; 64(1): 50-62, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26755814

RESUMO

Adipose-derived stem cells (ADSCs) have myocardial regeneration potential, and transplantation of these cells following myocardial infarction (MI) in animal models leads to modest improvements in cardiac function. We hypothesized that pharmacological priming of pre-transplanted ADSCs would further improve left ventricular functional recovery after MI. We previously identified a compound from a family of 3,5-disubstituted isoxazoles, ISX1, capable of activating an Nkx2-5-driven promoter construct. Here, using ADSCs, we found that ISX1 (20 mM, 4 days) triggered a robust, dose-dependent, fourfold increase in Nkx2-5 expression, an early marker of cardiac myocyte differentiation and increased ADSC viability in vitro. Co-culturing neonatal cardiomyocytes with ISX1-treated ADSCs increased early and late cardiac gene expression. Whereas ISX1 promoted ADSC differentiation toward a cardiogenic lineage, it did not elicit their complete differentiation or their differentiation into mature adipocytes, osteoblasts, or chondrocytes, suggesting that re-programming is cardiomyocyte specific. Cardiac transplantation of ADSCs improved left ventricular functional recovery following MI, a response which was significantly augmented by transplantation of ISX1- pretreated cells. Moreover, ISX1-treated and transplanted ADSCs engrafted and were detectable in the myocardium 3 weeks following MI, albeit at relatively small numbers. ISX1 treatment increased histone acetyltransferase (HAT) activity in ADSCs, which was associated with histone 3 and histone 4 acetylation. Finally, hearts transplanted with ISX1-treated ADSCs manifested significant increases in neovascularization, which may account for the improved cardiac function. These findings suggest that a strategy of drug-facilitated initiation of myocyte differentiation enhances exogenously transplanted ADSC persistence in vivo, and consequent tissue neovascularization, to improve cardiac function.


Assuntos
Tecido Adiposo/citologia , Miocárdio/patologia , Transplante de Células-Tronco , Células-Tronco/citologia , Cicatrização , Acetilação/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Condrogênese/efeitos dos fármacos , Condrogênese/genética , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Técnicas de Cocultura , Feminino , Histona Acetiltransferases/metabolismo , Histona Desacetilases/metabolismo , Histonas/metabolismo , Proteína Homeobox Nkx-2.5/metabolismo , Isoxazóis/farmacologia , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Neovascularização Fisiológica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Cicatrização/efeitos dos fármacos
8.
Hum Mol Genet ; 24(11): 3181-91, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25701874

RESUMO

Fabry disease is caused by deficient activity of lysosomal enzyme α-galactosidase A. The enzyme deficiency results in intracellular accumulation of glycosphingolipids, leading to a variety of clinical manifestations including hypertrophic cardiomyopathy and renal insufficiency. The mechanism through which glycosphingolipid accumulation causes these manifestations remains unclear. Current treatment, especially when initiated at later stage of the disease, does not produce completely satisfactory results. Elucidation of the pathogenesis of Fabry disease is therefore crucial to developing new treatments. We found increased activity of androgen receptor (AR) signaling in Fabry disease. We subsequently also found that blockade of AR signaling either through castration or AR-antagonist prevented and reversed cardiac and kidney hypertrophic phenotype in a mouse model of Fabry disease. Our findings implicate abnormal AR pathway in the pathogenesis of Fabry disease and suggest blocking AR signaling as a novel therapeutic approach.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Doença de Fabry/metabolismo , Hipertrofia Ventricular Esquerda/metabolismo , Nefropatias/metabolismo , Receptores Androgênicos/metabolismo , Animais , Doença de Fabry/tratamento farmacológico , Feminino , Hipertrofia Ventricular Esquerda/tratamento farmacológico , Rim/metabolismo , Rim/patologia , Nefropatias/tratamento farmacológico , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores Androgênicos/genética , Transdução de Sinais , Transcrição Gênica
9.
ACS Chem Biol ; 7(6): 1067-76, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22413910

RESUMO

Targeting native progenitors with small molecule pharmaceuticals that direct cell fate decisions is an attractive approach for regenerative medicine. Here, we show that 3,5-disubstituted isoxazoles (Isx), stem cell-modulator small molecules originally recovered in a P19 embryonal carcinoma cell-based screen, directed cardiac muscle gene expression in vivo in target tissues of adult transgenic reporter mice. Isx also stimulated adult mouse myocardial cell cycle activity. Narrowing our focus onto one target cardiac-resident progenitor population, Isx directed muscle transcriptional programs in vivo in multipotent Notch-activated epicardium-derived cells (NECs), generating Notch-activated adult cardiomyocyte-like precursors. Myocardial infarction (MI) preemptively differentiated NECs toward fibroblast lineages, overriding Isx's cardiogenic influence in this cell population. Isx dysregulated gene expression in vivo in Notch-activated repair fibroblasts, driving distinctive (pro-angiogenesis) gene programs, but failed to mitigate fibrosis or avert ventricular functional decline after MI. In NECs in vitro, Isx directed partial muscle differentiation, which included biosynthesis and assembly of sarcomeric α-actinin premyofibrils, beaded structures pathognomonic of early developing cardiomyocytes. Thus, although Isx small molecules have promising in vivo efficacy at the level of cardiac muscle gene expression in native multipotent progenitors and are first in class in this regard, a greater understanding of the dynamic interplay between fibrosis and cardiogenic small molecule signals will be required to pharmacologically enable regenerative repair of the heart.


Assuntos
Coração/efeitos dos fármacos , Isoxazóis/química , Isoxazóis/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Miocárdio/metabolismo , Ativação Transcricional/efeitos dos fármacos , Animais , Células Cultivadas , Expressão Gênica/efeitos dos fármacos , Coração/fisiopatologia , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Isoxazóis/uso terapêutico , Masculino , Camundongos , Camundongos Transgênicos , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Pericárdio/citologia , Pericárdio/metabolismo , Pericárdio/patologia , Pericárdio/fisiopatologia , Receptores Notch/metabolismo
10.
Differentiation ; 81(4): 233-42, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21419563

RESUMO

In the central nervous system (CNS), neural stem cells (NSCs) differentiate into neurons, astrocytes, and oligodendrocytes--these cell lineages are considered unidirectional and irreversible under normal conditions. The introduction of a defined set of transcription factors has been shown to directly convert terminally differentiated cells into pluripotent stem cells, reinforcing the notion that preserving cellular identity is an active process. Indeed, recent studies highlight that tumor suppressor genes (TSGs) such as Ink4a/Arf and p53, control the barrier to efficient reprogramming, leaving open the question whether the same TSGs function to maintain the differentiated state. During malignancy or following brain injury, mature astrocytes have been reported to re-express neuronal genes and re-gain neurogenic potential to a certain degree, yet few studies have addressed the underlying mechanisms due to a limited number of cellular models or tools to probe this process. Here, we use a synthetic small-molecule (isoxazole) to demonstrate that highly malignant EGFRvIII-expressing Ink4a/Arf(-/-); Pten(-/-) astrocytes downregulated their astrocyte character, re-entered the cell cycle, and upregulated neuronal gene expression. As a collateral discovery, isoxazole small-molecules blocked tumor cell proliferation in vitro, a phenotype likely coupled to activation of neuronal gene expression. Similarly, histone deacetylase inhibitors induced neuronal gene expression and morphologic changes associated with the neuronal phenotype, suggesting the involvement of epigenetic-mediated gene activation. Our study assesses the contribution of specific genetic pathways underlying the de-differentiation potential of astrocytes and uncovers a novel pharmacological tool to explore astrocyte plasticity, which may bring insight to reprogramming and anti-tumor strategies.


Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Desdiferenciação Celular/efeitos dos fármacos , Reprogramação Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/patologia , Isoxazóis/farmacologia , Neurogênese/genética , Tiofenos/farmacologia , Animais , Desdiferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Reprogramação Celular/genética , Epigênese Genética/efeitos dos fármacos , Receptores ErbB/genética , Glioma/genética , Inibidores de Histona Desacetilases/farmacologia , Isoxazóis/química , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neurônios/metabolismo , Proteínas Supressoras de Tumor/genética
11.
Circ Res ; 108(1): 51-9, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21106942

RESUMO

RATIONALE: Transgenic Notch reporter mice express enhanced green fluorescent protein in cells with C-promoter binding factor-1 response element transcriptional activity (CBF1-RE(x)4-EGFP), providing a unique and powerful tool for identifying and isolating "Notch-activated" progenitors. OBJECTIVE: We asked whether, as in other tissues of this mouse, EGFP localized and functionally tagged adult cardiac tissue progenitors, and, if so, whether this cell-based signal could serve as a quantitative and qualitative biosensor of the injury repair response of the heart. METHODS AND RESULTS: In addition to scattered endothelial and interstitial cells, Notch-activated (EGFP(+)) cells unexpectedly richly populated the adult epicardium. We used fluorescence-activated cell sorting to isolate EGFP(+) cells and excluded hematopoietic (CD45(+)) and endothelial (CD31(+)) subsets. We analyzed EGFP(+)/CD45⁻/CD31⁻ cells, a small (<2%) but distinct subpopulation, by gene expression profiling and functional analyses. We called this mixed cell pool, which had dual multipotent stromal cell and epicardial lineage signatures, Notch-activated epicardial-derived cells (NECs). Myocardial infarction and thoracic aortic banding amplified the NEC pool, increasing fibroblast differentiation. Validating the functional vitality of clonal NEC lines, serum growth factors triggered epithelial-mesenchymal transition and the immobilized Notch ligand Delta-like 1-activated downstream target genes. Moreover, cardiomyocyte coculture and engraftment in NOD-SCID (nonobese diabetic-severe combined immunodeficiency) mouse myocardium increased cardiac gene expression in NECs. CONCLUSIONS: A dynamic Notch injury response activates adult epicardium, producing a multipotent cell population that contributes to fibrosis repair.


Assuntos
Células-Tronco Multipotentes/metabolismo , Infarto do Miocárdio/metabolismo , Pericárdio/metabolismo , Receptores Notch/metabolismo , Animais , Proteínas de Ligação ao Cálcio , Fibrose , Perfilação da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Antígenos Comuns de Leucócito , Camundongos , Camundongos Transgênicos , Células-Tronco Multipotentes/patologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Pericárdio/patologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas , Receptores Notch/genética
12.
Cell Stem Cell ; 7(3): 380-90, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20804973

RESUMO

Bone marrow transplantation is the primary therapy for numerous hematopoietic disorders. The efficiency of bone marrow transplantation depends on the function of long-term hematopoietic stem cells (LT-HSCs), which is markedly influenced by their hypoxic niche. Survival in this low-oxygen microenvironment requires significant metabolic adaptation. Here, we show that LT-HSCs utilize glycolysis instead of mitochondrial oxidative phosphorylation to meet their energy demands. We used flow cytometry to identify a unique low mitochondrial activity/glycolysis-dependent subpopulation that houses the majority of hematopoietic progenitors and LT-HSCs. Finally, we demonstrate that Meis1 and Hif-1alpha are markedly enriched in LT-HSCs and that Meis1 regulates HSC metabolism through transcriptional activation of Hif-1alpha. These findings reveal an important transcriptional network that regulates HSC metabolism.


Assuntos
Glicólise , Células-Tronco Hematopoéticas/metabolismo , Hipóxia , Nicho de Células-Tronco/metabolismo , Animais , Metabolismo Energético , Proteínas de Homeodomínio , Subunidade alfa do Fator 1 Induzível por Hipóxia , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Proteína Meis1 , Proteínas de Neoplasias , Ativação Transcricional
13.
Mol Ther ; 16(5): 957-64, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18388932

RESUMO

Cardiosphere-derived resident cardiac stem cells (CDCs) are readily isolated from adult hearts and confer functional benefit in animal models of heart failure. To study cardiogenic differentiation in CDCs, we developed a method to genetically label and selectively enrich for cells that have acquired a cardiac phenotype. Lentiviral vectors achieved significantly higher transduction efficiencies in CDCs than any of the nine adeno-associated viral (AAV) serotypes tested. To define the most suitable vector system for reporting cardiogenic differentiation, we compared the cell specificity of five commonly-used cardiac-specific promoters in the context of lentiviral vectors. The promoter of the cardiac sodium-calcium exchanger (NCX1) conveyed the highest degree of cardiac specificity, as assessed by transducing seven cell types with each vector and measuring fluorescence intensity by flow cytometry. NCX1-GFP-positive CDC subpopulations, demonstrating prolonged expression of a variety of cardiac markers, could be isolated and expanded in vitro. Finally, we used chemical biology to validate that lentiviral vectors bearing the cardiac NCX1-promoter can serve as a highly accurate biosensor of cardiogenic small molecules in stem cells. The ability to accurately report cardiac fate and selectively enrich for cardiomyocytes and their precursors has important implications for drug discovery and the development of cell-based therapies.


Assuntos
Vetores Genéticos , Lentivirus/genética , Regiões Promotoras Genéticas , Trocador de Sódio e Cálcio/metabolismo , Células-Tronco/citologia , Animais , Diferenciação Celular , Dependovirus/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Cobaias , Humanos , Camundongos , Modelos Biológicos , Miocárdio/metabolismo , Fenótipo , Ratos
14.
Semin Oncol ; 29(3 Suppl 11): 22-8, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12138394

RESUMO

Trastuzumab, a monoclonal antibody that is selective for cells that overexpress the erbB2 receptor protein tyrosine kinase, is a promising targeted therapy for the treatment of breast cancer. Surprisingly, toxic cardiovascular side effects were discovered in late-phase clinical trials, and these effects were most prominent when trastuzumab was combined with anthracycline chemotherapy. We review recent data focusing on how erbB2 monoclonal antibodies could exert a cardiotoxic effect through unique cardiomyocyte cell surface and intracellular structural features, and how an individual's cardiac susceptibility to erbB2 monoclonal antibodies may be dictated by the ability of erbB2 monoclonal antibodies to bind cardiomyocytes. In addition, we discuss ways that anthracyclines may also affect erbB2/erbB4/neuregulin receptor signaling, explaining the apparent synergistic effect. Further investigation of the role of normal and aberrant erbB2 signaling in the development of cardiac dysfunction could lead to an improved understanding of the pathophysiology of cardiac dysfunction and may lead to novel therapies for the treatment of heart failure, regardless of etiology. Understanding the nature and specificity of trastuzumab's cardiotoxic effects is important in better defining clinical criteria for inclusion and exclusion of patients who can safely receive trastuzumab for the treatment of breast cancer, or possibly other malignancies.


Assuntos
Anticorpos Monoclonais/efeitos adversos , Antineoplásicos/efeitos adversos , Neoplasias da Mama/tratamento farmacológico , Cardiomiopatias/induzido quimicamente , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/efeitos adversos , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Cardiomiopatias/fisiopatologia , Sinergismo Farmacológico , Receptor ErbB-2/antagonistas & inibidores , Trastuzumab
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA