Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(8): 21990-21999, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36280635

RESUMO

The pronephros (early-stage kidney) is an important osmoregulatory organ, and the onset of its function occurs relatively early in some teleost fishes. As such, any defects in kidney development and function are likely associated with a decreased ability to osmoregulate. Previous work has shown that early-life stage (ELS) zebrafish (Danio rerio) acutely exposed to Deepwater Horizon (DWH) crude oil exhibit transcriptional changes in key genes involved in pronephros development and function, as well as pronephric morphological defects and whole-animal osmoregulatory impairment. The objective of this study was to examine the acute effects of crude oil exposure during zebrafish ELS on pronephros function by assessing its fluid clearance capacity and glomerular filtration integrity. Following a 72-h exposure to control conditions, 20% or 40% dilutions of high-energy water-accommodated fractions (HEWAF) of DWH crude oil, zebrafish were injected into the common cardinal vein either with fluorescein-labeled (FITC) 70-kDa dextran to assess glomerular filtration integrity or with FITC-inulin to assess pronephric clearance capacity. Fluorescence was quantified after the injections at predetermined time intervals by fluorescence microscopy. The results demonstrated a diminished pronephric fluid clearance capacity and failed glomerular perfusion when larvae were exposed to 40% HEWAF dilutions, whereas only a reduced glomerular filtration selectivity was observed in zebrafish previously exposed to the 20% HEWAF dilution.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Animais , Peixe-Zebra/genética , Petróleo/toxicidade , Rim/química , Larva , Poluentes Químicos da Água/análise
2.
Part Fibre Toxicol ; 18(1): 3, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33419468

RESUMO

BACKGROUND: Exposure to traffic-generated emissions is associated with the development and exacerbation of inflammatory lung disorders such as chronic obstructive pulmonary disorder (COPD) and idiopathic pulmonary fibrosis (IPF). Although many lung diseases show an expansion of Proteobacteria, the role of traffic-generated particulate matter pollutants on the lung microbiota has not been well-characterized. Thus, we investigated the hypothesis that exposure to diesel exhaust particles (DEP) can alter commensal lung microbiota, thereby promoting alterations in the lung's immune and inflammatory responses. We aimed to understand whether diet might also contribute to the alteration of the commensal lung microbiome, either alone or related to exposure. To do this, we used male C57Bl/6 mice (4-6-week-old) on either regular chow (LF) or high-fat (HF) diet (45% kcal fat), randomly assigned to be exposed via oropharyngeal aspiration to 35 µg DEP, suspended in 35 µl 0.9% sterile saline or sterile saline only (control) twice a week for 30 days. A separate group of study animals on the HF diet was concurrently treated with 0.3 g/day of Winclove Ecologic® Barrier probiotics in their drinking water throughout the study. RESULTS: Our results show that DEP-exposure increases lung tumor necrosis factor (TNF)-α, interleukin (IL)-10, Toll-like receptor (TLR)-2, TLR-4, and the nuclear factor kappa B (NF-κB) histologically and by RT-qPCR, as well as Immunoglobulin A (IgA) and Immunoglobulin G (IgG) in the bronchoalveolar lavage fluid (BALF), as quantified by ELISA. We also observed an increase in macrophage infiltration and peroxynitrite, a marker of reactive oxygen species (ROS) + reactive nitrogen species (RNS), immunofluorescence staining in the lungs of DEP-exposed and HF-diet animals, which was further exacerbated by concurrent DEP-exposure and HF-diet consumption. Histological examinations revealed enhanced inflammation and collagen deposition in the lungs DEP-exposed mice, regardless of diet. We observed an expansion of Proteobacteria, by qPCR of bacterial 16S rRNA, in the BALF of DEP-exposed mice on the HF diet, which was diminished with probiotic-treatment. CONCLUSIONS: Our findings suggest that exposure to DEP causes persistent and sustained inflammation and bacterial alterations in a ROS-RNS mediated fashion, which is exacerbated by concurrent consumption of an HF diet.


Assuntos
Dieta Hiperlipídica , Emissões de Veículos , Animais , Líquido da Lavagem Broncoalveolar , Inflamação , Pulmão , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nitrogênio , Material Particulado/toxicidade , RNA Ribossômico 16S , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio , Emissões de Veículos/toxicidade
3.
J Alzheimers Dis ; 78(4): 1453-1471, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33164937

RESUMO

BACKGROUND: Multiple studies report a strong correlation between traffic-generated air pollution-exposure and detrimental outcomes in the central nervous system (CNS), including Alzheimer's disease (AD). Incidence of AD is rapidly increasing and, worldwide, many live in regions where pollutants exceed regulatory standards. Thus, it is imperative to identify environmental pollutants that contribute to AD, and the mechanisms involved. OBJECTIVE: We investigated the effects of mixed gasoline and diesel engine emissions (MVE) on the expression of factors involved in progression of AD in the hippocampus and cerebrum in a young versus aged mouse model. METHODS: Young (2 months old) and aged (18 months old) male C57BL/6 mice were exposed to either MVE (300µg/m3 PM) or filtered air (FA) for 6 h/d, 7 d/wk, for 50 d. Immunofluorescence and RT-qPCR were used to quantify oxidative stress (8-OHdG) and expression of amyloid-ß protein precursor (AßPP), ß secretase (BACE1), amyloid-ß (Aß), aryl hydrocarbon receptor (AhR), cytochrome P450 (CYP) 1B1, angiotensin-converting enzyme (ACE1), and angiotensin II type 1 (AT1) receptor in the cerebrum and hippocampus, in addition to cerebral microvascular tight junction (TJ) protein expression. RESULTS: We observed age-related increases in oxidative stress, AhR, CYP1B1, Aß, BACE1, and AT1 receptor in the CA1 region of the hippocampus, and elevation of cerebral AßPP, AhR, and CYP1B1 mRNA, associated with decreased cerebral microvascular TJ protein claudin-5. MVE-exposure resulted in further promotion of oxidative stress, and significant increases in AhR, CYP1B1, BACE1, ACE1, and Aß, compared to the young and aged FA-exposed mice. CONCLUSION: Such findings suggest that MVE-exposure exacerbates the expression of factors in the CNS associated with AD pathogenesis in aged populations.


Assuntos
Doença de Alzheimer/genética , Estresse Oxidativo/genética , Emissões de Veículos , 8-Hidroxi-2'-Desoxiguanosina/genética , Secretases da Proteína Precursora do Amiloide/genética , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Cérebro/metabolismo , Citocromo P-450 CYP1B1/genética , Hipocampo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Peptidil Dipeptidase A/genética , Receptor Tipo 1 de Angiotensina/genética , Receptores de Hidrocarboneto Arílico/genética , Proteínas de Junções Íntimas/genética , Poluição Relacionada com o Tráfego , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA