Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 301: 122256, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37517209

RESUMO

Diabetes is associated with an altered global inflammatory state with impaired wound healing. Mesenchymal stem/stromal cells (MSC) are being explored for treatment of diabetic cutaneous wounds due to their regenerative properties. These cells are commonly delivered by injection, but the need to prolong the retention of MSC at sites of injury has spurred the development of biomaterial-based MSC delivery vehicles. However, controlling biomaterial degradation rates in vivo remains a therapeutic-limiting challenge. Here, we utilize hydrolytically degradable ester linkages to engineer synthetic hydrogels with tunable in vivo degradation kinetics for temporally controlled delivery of MSC. In vivo hydrogel degradation rate can be controlled by altering the ratio of ester to amide linkages in the hydrogel macromers. These hydrolytic hydrogels degrade at rates that enable unencumbered cutaneous wound healing, while enhancing the local persistence MSC compared to widely used protease-degradable hydrogels. Furthermore, hydrogel-based delivery of MSC modulates local immune responses and enhances cutaneous wound repair in diabetic mice. This study introduces a simple strategy for engineering tunable degradation modalities into synthetic biomaterials, overcoming a key barrier to their use as cell delivery vehicles.


Assuntos
Diabetes Mellitus Experimental , Células-Tronco Mesenquimais , Camundongos , Animais , Hidrogéis/metabolismo , Cicatrização/fisiologia , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/metabolismo , Células-Tronco Mesenquimais/metabolismo , Materiais Biocompatíveis/metabolismo , Imunomodulação , Imunidade
2.
Biomaterials ; 286: 121601, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35660823

RESUMO

The transformative potential of cells as therapeutic agents is being realized in a wide range of applications, from regenerative medicine to cancer therapy to autoimmune disorders. The majority of these therapies require ex vivo expansion of the cellular product, often utilizing fetal bovine serum (FBS) in the culture media. However, the impact of residual FBS on immune responses to cell therapies and the resulting cell therapy outcomes remains unclear. Here, we show that hydrogel-delivered FBS elicits a robust type 2 immune response characterized by infiltration of eosinophils and CD4+ T cells. Host secretion of cytokines associated with type 2 immunity, including IL-4, IL-5, and IL-13, is also increased in FBS-containing hydrogels. We demonstrate that the immune response to xenogeneic serum components dominates the local environment and masks the immunomodulatory effects of biomaterial-delivered mesenchymal stromal/stem cells. Importantly, delivery of relatively small amounts of FBS (3.2% by volume) within BMP-2-containing biomaterial constructs dramatically reduces the ability of these constructs to promote de novo bone formation in a radial defect model in immunocompetent mice. These results urge caution when interpreting the immunological and tissue repair outcomes in immunocompetent pre-clinical models from cells and biomaterial constructs that have come in contact with xenogeneic serum components.


Assuntos
Materiais Biocompatíveis , Células-Tronco Mesenquimais , Animais , Materiais Biocompatíveis/farmacologia , Diferenciação Celular , Hidrogéis/farmacologia , Imunidade , Camundongos , Osteogênese
3.
Adv Healthc Mater ; 11(2): e2101995, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725948

RESUMO

Human mesenchymal stromal cells (hMSCs) are a promising source for regenerative cell therapy. However, hMSC clinical use has been stymied by product variability across hMSC donors and manufacturing practices resulting in inconsistent clinical outcomes. The inability to predict hMSC clinical efficacy, or potency, is a major limitation for market penetration. Standard metrics of hMSC potency employ hMSCs and third-party immune cell co-cultures, however, these assays face translational challenges due to third-party donor variability and lack of scalability. While surrogate markers of hMSC potency have been suggested, none have yet had translational success. To address this, a high-throughput, scalable, low-cost, on-chip microfluidic potency assay is presented with improved functional predictive power and recapitulation of in vivo secretory responses compared to traditional approaches. Comparison of hMSC secretory responses to functional hMSC-medicated immune cell suppression demonstrates shortcomings of current surrogate potency markers and identifies on-chip microfluidic potency markers with improved functional predictive power compared to traditional planar methods. Furthermore, hMSC secretory performance achieved in the on-chip microfluidic system has improved similarity compared to an in vivo model. The results underscore the shortcomings of current culture practices and present a novel system with improved functional predictive power and hMSC physiological responses.


Assuntos
Células-Tronco Mesenquimais , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Microfluídica
4.
Mater Sci Eng C Mater Biol Appl ; 120: 111716, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33545868

RESUMO

Human mesenchymal stem cells (hMSCs) are an attractive source for cell therapies because of their multiple beneficial properties, i.e. via immunomodulation and secretory factors. Microfluidics is particularly attractive for cell encapsulation since it provides a rapid and reproducible methodology for microgel generation of controlled size and simultaneous cell encapsulation. Here, we report the fabrication of hMSC-laden microcarriers based on in situ ionotropic gelation of water-soluble chitosan in a microfluidic device using a combination of an antioxidant glycerylphytate (G1Phy) compound and tripolyphosphate (TPP) as ionic crosslinkers (G1Phy:TPP-microgels). These microgels showed homogeneous size distributions providing an average diameter of 104 ± 12 µm, somewhat lower than that of control (127 ± 16 µm, TPP-microgels). The presence of G1Phy in microgels maintained cell viability over time and upregulated paracrine factor secretion under adverse conditions compared to control TPP-microgels. Encapsulated hMSCs in G1Phy:TPP-microgels were delivered to the subcutaneous space of immunocompromised mice via injection, and the delivery process was as simple as the injection of unencapsulated cells. Immediately post-injection, equivalent signal intensities were observed between luciferase-expressing microgel-encapsulated and unencapsulated hMSCs, demonstrating no adverse effects of the microcarrier on initial cell survival. Cell persistence, inferred by bioluminescence signal, decreased exponentially over time showing relatively higher half-life values for G1Phy:TPP-microgels compared to TPP-microgels and unencapsulated cells. In overall, results position the microfluidics generated G1Phy:TPP-microgels as a promising microcarrier for supporting hMSC survival and reparative activities.


Assuntos
Quitosana , Células-Tronco Mesenquimais , Microgéis , Animais , Sobrevivência Celular , Humanos , Camundongos , Microfluídica
5.
Integr Biol (Camb) ; 11(4): 154-162, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31135880

RESUMO

Human mesenchymal stromal cells (hMSCs) are a promising cell source for numerous regenerative medicine and cell therapy-based applications. However, MSC-based therapies have faced challenges in translation to the clinic, in part due to the lack of sufficient technologies that accurately predict MSC potency and are viable in the context of cell manufacturing. Microfluidic platforms may provide an innovative opportunity to address these challenges by enabling multiparameter analyses of small sample sizes in a high throughput and cost-effective manner, and may provide a more predictive environment in which to analyze hMSC potency. To this end, we demonstrate the feasibility of incorporating 3D culture environments into microfluidic platforms for analysis of hMSC secretory response to inflammatory stimuli and multi-parameter testing using cost-effective and scalable approaches. We first find that the cytokine secretion profile for hMSCs cultured within synthetic poly(ethylene glycol)-based hydrogels is significantly different compared to those cultured on glass substrates, both in growth media and following stimulation with IFN-γ and TNF-α, for cells derived from two donors. For both donors, perfusion with IFN-γ and TNF-α leads to differences in secretion of interleukin 6 (IL-6), interleukin 8 (IL-8), monocyte chemoattractant protein 1 (MCP-1), macrophage colony-stimulating factor (M-CSF), and interleukin-1 receptor antagonist (IL-1ra) between hMSCs cultured in hydrogels and those cultured on glass substrates. We then demonstrate the feasibility of analyzing the response of hMSCs to a stable concentration gradient of soluble factors such as inflammatory stimuli for potential future use in potency analyses, minimizing the amount of sample required for dose-response testing.


Assuntos
Células-Tronco Mesenquimais/citologia , Microfluídica , Células Estromais/citologia , Técnicas de Cultura de Células/economia , Técnicas de Cultura de Células/métodos , Citocinas/metabolismo , Humanos , Hidrogéis/química , Sistema Imunitário , Inflamação , Interferon gama/metabolismo , Dispositivos Lab-On-A-Chip , Oligopeptídeos/química , Polietilenoglicóis/química , Fator de Necrose Tumoral alfa/metabolismo
6.
Biomaterials ; 73: 110-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26406451

RESUMO

Non-Hodgkin lymphomas are a heterogeneous group of lymphoproliferative disorders of B and T cell origin that are treated with chemotherapy drugs with variable success rate that has virtually not changed over decades. Although new classes of chemotherapy-free epigenetic and metabolic drugs have emerged, durable responses to these conventional and new therapies are achieved in a fraction of cancer patients, with many individuals experiencing resistance to the drugs. The paucity in our understanding of what regulates the drug resistance phenotype and establishing a predictive indicator is, in great part, due to the lack of adequate ex vivo lymphoma models to accurately study the effect of microenvironmental cues in which malignant B and T cell lymphoma cells arise and reside. Unlike many other tumors, lymphomas have been neglected from biomaterials-based microenvironment engineering standpoint. In this study, we demonstrate that B and T cell lymphomas have different pro-survival integrin signaling requirements (αvß3 and α4ß1) and the presence of supporting follicular dendritic cells are critical for enhanced proliferation in three-dimensional (3D) microenvironments. We engineered adaptable 3D tumor organoids presenting adhesive peptides with distinct integrin specificities to B and T cell lymphoma cells that resulted in enhanced proliferation, clustering, and drug resistance to the chemotherapeutics and a new class of histone deacetylase inhibitor (HDACi), Panobinostat. In Diffuse Large B cell Lymphomas, the 3D microenvironment upregulated the expression level of B cell receptor (BCR), which supported the survival of B cell lymphomas through a tyrosine kinase Syk in the upstream BCR pathway. Our integrin specific ligand functionalized 3D organoids mimic a lymphoid neoplasm-like heterogeneous microenvironment that could, in the long term, change the understanding of the initiation and progression of hematological tumors, allow primary biospecimen analysis, provide prognostic values, and importantly, allow a faster and more rational screening and translation of therapeutic regimens.


Assuntos
Hidrogéis/química , Integrinas/metabolismo , Linfoma de Células B/metabolismo , Linfoma não Hodgkin/metabolismo , Linfoma de Células T/metabolismo , Antineoplásicos/uso terapêutico , Apoptose , Materiais Biocompatíveis/química , Proliferação de Células , Técnicas de Cocultura , Células Dendríticas/citologia , Inibidores de Histona Desacetilases/química , Humanos , Ácidos Hidroxâmicos/química , Indóis/química , Integrina alfa4beta1/metabolismo , Integrina alfaVbeta3/metabolismo , Ligantes , Microscopia Confocal , Microscopia de Fluorescência , Organoides/química , Tonsila Palatina/metabolismo , Panobinostat , Receptores de Antígenos de Linfócitos B/química , Transdução de Sinais , Engenharia Tecidual/métodos , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA