Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Phys Med ; 119: 103317, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38430675

RESUMO

BACKGROUND: Classical radiation protocols are guided by physical dose delivered homogeneously over the target. Protocols are chosen to keep normal tissue complication probability (NTCP) at an acceptable level. Organs at risk (OAR) adjacent to the target volume could lead to underdosage of the tumor and a decrease of tumor control probability (TCP). The intent of our study was to explore a biology-based dose escalation: by keeping NTCP for OAR constant, radiation dose was to be maximized, allowing to result in heterogeneous dose distributions. METHODS: We used computed tomography datasets of 25 dogs with brain tumors, previously treated with 10x4 Gy (40 Gy to PTV D50). We generated 3 plans for each patient: A) original treatment plan with homogeneous dose distribution, B) heterogeneous dose distribution with strict adherence to the same NTCPs as in A), and C) heterogeneous dose distribution with adherence to NTCP <5%. For plan comparison, TCPs and TCP equivalent doses (homogenous target dose which results in the same TCP) were calculated. To enable the use of the generalized equivalent uniform dose (gEUD) metric of the tumor target in plan optimization, the calculated TCP values were used to obtain the volume effect parameter a. RESULTS: As intended, NTCPs for all OARs did not differ from plan A) to B). In plan C), however, NTCPs were significantly higher for brain (mean 2.5% (SD±1.9, 95%CI: 1.7,3.3), p<0.001), optic chiasm (mean 2.0% (SD±2.2, 95%CI: 1.0,2.8), p=0.010) compared to plan A), but no significant increase was found for the brainstem. For 24 of 25 of the evaluated patients, the heterogenous plans B) and C) led to an increase in target dose and projected increase in TCP compared to the homogenous plan A). Furthermore, the distribution of the projected individual TCP values as a function of the dose was found to be in good agreement with the population TCP model. CONCLUSION: Our study is a first step towards risk-adaptive radiation dose optimization. This strategy utilizes a biologic objective function based on TCP and NTCP instead of an objective function based on physical dose constraints.


Assuntos
Neoplasias , Radioterapia de Intensidade Modulada , Humanos , Cães , Animais , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Encéfalo , Probabilidade , Biologia
2.
Z Med Phys ; 34(1): 140-152, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36803393

RESUMO

The quantification of the effects of space radiation for manned spaceflight can be approximated by nanodosimetric measurements. For the development of nanodosimetric detectors, a Monte Carlo model for ion mobility and diffusion for characteristic electric fields is presented. This model can be used to describe the interactions of ions in their parent gas based solely on commonly known input parameters, such as the ionization potential, kinetic diameter, molar mass, and polarizability of the gas. A model for approximating the resonant charge exchange cross section has been proposed, requiring only the ionization energy and mass of the parent gas as input parameters. The method proposed in this work was tested against experimental drift velocity data for a wide range of gases (helium, neon, nitrogen, argon, krypton, carbon monoxide, carbon dioxide, oxygen, propane). The transverse diffusion coefficients were compared to experimental values for helium, nitrogen, neon, argon, and propane gas. With the Monte Carlo code and resonant charge exchange cross section approximation model presented in this work, it is now possible to calculate an estimate of the drift velocities, transverse diffusion, and thus the ion mobility of ions in their parent gas. This is essential for further nanodosimetric detector development, as those parameters are often not well known for the gas mixtures used in nanodosimetry.


Assuntos
Hélio , Propano , Neônio , Argônio , Íons , Nitrogênio , Método de Monte Carlo
3.
Z Med Phys ; 34(1): 92-99, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37932191

RESUMO

An illustrative sample mission of a Mars swing-by mission lasting one calendar year was chosen to highlight the application of European risk assessment software to cancer (all solid cancer plus leukaemia) risks from radiation exposures in space quantified with organ dose equivalent rates from model calculations based on the quantity Radiation Attributed Decrease of Survival (RADS). The relevant dose equivalent to the colon for radiation exposures from this Mars swing-by mission were found to vary between 198 and 482 mSv. These doses depend on sex and the two other factors investigated here of: solar activity phase (maximum or minimum); and the choice of space radiation quality factor used in the calculations of dose equivalent. Such doses received at typical astronaut ages around 40 years old will result in: the probability of surviving until retirement age (65 years) being reduced by a range from 0.38% (95%CI: 0.29; 0.49) to 1.29% (95%CI: 1.06; 1.56); and the probability of surviving cancer free until retirement age being reduced by a range from 0.78% (95%CI: 0.59; 0.99) to 2.63% (95%CI: 2.16; 3.18). As expected from the features of the models applied to quantify the general dosimetric and radiation epidemiology parameters, the cancer incidence risks in terms of surviving cancer free, are higher than the cancer mortality risks in terms of surviving, the risks for females are higher than for males, and the risks at solar minimum are higher than at solar maximum.


Assuntos
Neoplasias , Proteção Radiológica , Voo Espacial , Masculino , Feminino , Humanos , Idoso , Adulto , Astronautas , Doses de Radiação , Medição de Risco , Neoplasias/radioterapia
4.
Front Oncol ; 13: 1222800, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795436

RESUMO

Background: In radiotherapy, especially when treating children, minimising exposure of healthy tissue can prevent the development of adverse outcomes, including second cancers. In this study we propose a validated Monte Carlo framework to evaluate the complete patient exposure during paediatric brain cancer treatment. Materials and methods: Organ doses were calculated for treatment of a diffuse midline glioma (50.4 Gy with 1.8 Gy per fraction) on a 5-year-old anthropomorphic phantom with 3D-conformal radiotherapy, intensity modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT) and intensity modulated pencil beam scanning (PBS) proton therapy. Doses from computed tomography (CT) for planning and on-board imaging for positioning (kV-cone beam CT and X-ray imaging) accounted for the estimate of the exposure of the patient including imaging therapeutic dose. For dose calculations we used validated Monte Carlo-based tools (PRIMO, TOPAS, PENELOPE), while lifetime attributable risk (LAR) was estimated from dose-response relationships for cancer induction, proposed by Schneider et al. Results: Out-of-field organ dose equivalent data of proton therapy are lower, with doses between 0.6 mSv (testes) and 120 mSv (thyroid), when compared to photon therapy revealing the highest out-of-field doses for IMRT ranging between 43 mSv (testes) and 575 mSv (thyroid). Dose delivered by CT ranged between 0.01 mSv (testes) and 72 mSv (scapula) while a single imaging positioning ranged between 2 µSv (testes) and 1.3 mSv (thyroid) for CBCT and 0.03 µSv (testes) and 48 µSv (scapula) for X-ray. Adding imaging dose from CT and daily CBCT to the therapeutic demonstrated an important contribution of imaging to the overall radiation burden in the course of treatment, which is subsequently used to predict the LAR, for selected organs. Conclusion: The complete patient exposure during paediatric brain cancer treatment was estimated by combining the results from different Monte Carlo-based dosimetry tools, showing that proton therapy allows significant reduction of the out-of-field doses and secondary cancer risk in selected organs.

5.
J Appl Clin Med Phys ; 24(12): e14143, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37738649

RESUMO

PURPOSE: The purpose of this study is to assess the quality of automatic planned O-Ring Halcyon linac SBRT plans for pelvic lymph node metastases and to establish an absolute PTV volume threshold as a plan quality prediction criterion. Compliance of the plans to institutional SBRT plan evaluation criteria and differences in plan quality and treatment delivery times between Halcyon Linac and CyberKnife robotic SBRT were evaluated. METHODS: Twenty-one CyberKnife treatment plans were replanned for Halcyon. Prescription doses range was 26-40 Gy in mean three fractions. The mean/median planning target volume was 4.0/3.6 cm3 . Institutional criteria for the plan evaluation were: New Conformity Index (NCI), Conformity Index (CI), Modified Gradient Index (MGI), selectivity index reciprocal (PIV/TVPIV ), and the target coverage by prescription isodose (%PIV). Statistical analysis based on the receiver operating characteristic (ROC) curve was used to determine a plan quality predictor threshold of the PTV volume. Comparative analysis of normal tissue complication probabilities (NTCP) was used to assess the risk of toxicity in healthy tissues. RESULTS: Seventy-one percent (n = 15)/95% (n = 20) of Halcyon and 81% (n = 17)/100% (n = 21) of CK plans fulfilled all ideal/tolerance criteria. For PTVs above a found optimal threshold of 2.6 cm3 (71%, n = 15), no statistically significant difference was observed between the CI, NCI, PIV/TVPIV , and MGI indexes of both groups, while the coverage (%PIV) was statistically but not clinically significantly different between cohorts. Significantly shorter delivery times are expected with Halcyon. No significant differences in NTCP were observed. CONCLUSION: All but one automatically optimized Halcyon treatment plans demonstrated ideal or acceptable performance. PTV threshold of 2.6 cm3 can be used as decision criteria in clinical settings. The results of our study demonstrated the promising performance of the Halcyon for pelvic SBRT, although plan-specific QA is required to verify machine performance during plan delivery.


Assuntos
Radiocirurgia , Radioterapia de Intensidade Modulada , Procedimentos Cirúrgicos Robóticos , Humanos , Radiocirurgia/métodos , Dosagem Radioterapêutica , Metástase Linfática , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
6.
NPJ Microgravity ; 9(1): 8, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707520

RESUMO

Human spaceflight is entering a new era of sustainable human space exploration. By 2030 humans will regularly fly to the Moon's orbit, return to the Moon's surface and preparations for crewed Mars missions will intensify. In planning these undertakings, several challenges will need to be addressed in order to ensure the safety of astronauts during their space travels. One of the important challenges to overcome, that could be a major showstopper of the space endeavor, is the exposure to the space radiation environment. There is an urgent need for quantifying, managing and limiting the detrimental health risks and electronics damage induced by space radiation exposure. Such risks raise key priority topics for space research programs. Risk limitation involves obtaining a better understanding of space weather phenomena and the complex radiation environment in spaceflight, as well as developing and applying accurate dosimetric instruments, understanding related short- and long-term health risks, and strategies for effective countermeasures to minimize both exposure to space radiation and the remaining effects post exposure. The ESA/SciSpacE Space Radiation White Paper identifies those topics and underlines priorities for future research and development, to enable safe human and robotic exploration of space beyond Low Earth Orbit.

7.
Curr Oncol ; 29(9): 6314-6324, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36135065

RESUMO

Purpose: Determine the time-dependent magnitude of intrafraction prostate displacement and a cutoff for the tracking decision. Methods: Nine patients with localized prostate cancer were treated with ultra-hypofractionated radiotherapy (CyberKnife) with fiducial markers. Exact tract kV/kV imaging was used with an average interval of 19−92 s. A Gaussian distribution was calculated for the x-, y-, and z-directions (σx,y,z). The variation of prostate motion (µσ) was obtained by averaging the patients' specifics, and the safety margin was calculated to be MAB = WYm + WBSs. Results: The calculated PTV safety margins were as follows: at 40 s: 0.55 mm (L/r), 0.85 mm (a/p), and 1.05 mm (s/i); at 60 s: 0.9 mm (L/r), 1.35 mm (a/p), and 1.55 mm (s/i); at 100 s: 1.5 mm (L/r), 2.3 mm (a/p), and 2.6 mm (s/i); at 150 s: 1.9 mm (L/r), 3.1 mm (a/p), and 3.6 mm (s/i); at 200 s: 2.2 mm (L/r), 3.8 mm (a/p), and 4.2 mm (s/i); and at 300 s: 2.6 mm (L/r), 5.3 mm (a/p), and 5.6 mm (s/i). A tracking cutoff of 2.5 min seemed reasonable. In order to achieve an accuracy of < 1 mm, tracking with < 50 s intervals was necessary. Conclusions: For ultra-hypofractionated radiotherapy of the prostate with treatment times > 2.5 min, intrafraction motion management is recommended.


Assuntos
Neoplasias da Próstata , Radioterapia Guiada por Imagem , Marcadores Fiduciais , Humanos , Masculino , Próstata , Neoplasias da Próstata/radioterapia , Radioterapia Guiada por Imagem/métodos
8.
Biomed Phys Eng Express ; 8(6)2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35981496

RESUMO

Objective.In this modelling study, we pursued two main goals. The first was to establish a new CTV-to-PTV expansion which considers the closest and most critical organ at risk (OAR). The second goal was to investigate the impact of the planning target volume (PTV) margin size on the tumor control probability (TCP) and its dependence on the geometrical setup uncertainties. The aim was to achieve a smaller margin expansion close to the OAR while allowing a moderately larger expansion in less critical areas further away from the OAR and whilst maintaining the TCP.Approach.Imaging data of radiation therapy plans from pet dogs which had undergone radiation therapy for brain tumor were used to estimate the clinic specific rotational setup uncertainties. A Monte-Carlo methodology using a voxel-based TCP model was used to quantify the implications of rotational setup uncertainties on the TCP. A combination of algorithms was utilized to establish a computational CTV-to-PTV expansion method based on probability density. This was achieved by choosing a center of rotation close to an OAR. All required software modules were developed and integrated into a software package that directly interacts with the Varian Eclipse treatment planning system.Main results.Several uniform and non-isotropic PTVs were created. To ensure comparability and consistency, standardized RT plans with equal optimization constraints were defined, automatically applied and calculated on these targets. The resulting TCPs were then computed, evaluated and compared.Significance.The non-isotropic margins were found to result in larger TCPs with smaller margin excess volume. Further, we presented an additional application of the newly established CTV-to-PTV expansion method for radiation therapy of the spinal axis of human patients.


Assuntos
Neoplasias Encefálicas , Planejamento da Radioterapia Assistida por Computador , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Cães , Humanos , Probabilidade , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Incerteza
9.
Front Oncol ; 12: 882506, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875147

RESUMO

Background: The out-of-the-field absorbed dose affects the probability of primary second radiation-induced cancers. This is particularly relevant in the case of pediatric treatments. There are currently no methods employed in the clinical routine for the computation of dose distributions from stray radiation in radiotherapy. To overcome this limitation in the framework of conventional teletherapy with photon beams, two computational tools have been developed-one based on an analytical approach and another depending on a fast Monte Carlo algorithm. The purpose of this work is to evaluate the accuracy of these approaches by comparison with experimental data obtained from anthropomorphic phantom irradiations. Materials and Methods: An anthropomorphic phantom representing a 5-year-old child (ATOM, CIRS) was irradiated considering a brain tumor using a Varian TrueBeam linac. Two treatments for the same planned target volume (PTV) were considered, namely, intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). In all cases, the irradiation was conducted with a 6-MV energy beam using the flattening filter for a prescribed dose of 3.6 Gy to the PTV. The phantom had natLiF : Mg, Cu, P (MCP-N) thermoluminescent dosimeters (TLDs) in its 180 holes. The uncertainty of the experimental data was around 20%, which was mostly attributed to the MCP-N energy dependence. To calculate the out-of-field dose, an analytical algorithm was implemented to be run from a Varian Eclipse TPS. This algorithm considers that all anatomical structures are filled with water, with the exception of the lungs which are made of air. The fast Monte Carlo code dose planning method was also used for computing the out-of-field dose. It was executed from the dose verification system PRIMO using a phase-space file containing 3x109 histories, reaching an average standard statistical uncertainty of less than 0.2% (coverage factor k = 1 ) on all voxels scoring more than 50% of the maximum dose. The standard statistical uncertainty of out-of-field voxels in the Monte Carlo simulation did not exceed 5%. For the Monte Carlo simulation the actual chemical composition of the materials used in ATOM, as provided by the manufacturer, was employed. Results: In the out-of-the-field region, the absorbed dose was on average four orders of magnitude lower than the dose at the PTV. For the two modalities employed, the discrepancy between the central values of the TLDs located in the out-of-the-field region and the corresponding positions in the analytic model were in general less than 40%. The discrepancy in the lung doses was more pronounced for IMRT. The same comparison between the experimental and the Monte Carlo data yielded differences which are, in general, smaller than 20%. It was observed that the VMAT irradiation produces the smallest out-of-the-field dose when compared to IMRT. Conclusions: The proposed computational methods for the routine calculation of the out-of-the-field dose produce results that are similar, in most cases, with the experimental data. It has been experimentally found that the VMAT irradiation produces the smallest out-of-the-field dose when compared to IMRT for a given PTV.

10.
Front Oncol ; 12: 882489, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756661

RESUMO

Proton therapy enables to deliver highly conformed dose distributions owing to the characteristic Bragg peak and the finite range of protons. However, during proton therapy, secondary neutrons are created, which can travel long distances and deposit dose in out-of-field volumes. This out-of-field absorbed dose needs to be considered for radiation-induced secondary cancers, which are particularly relevant in the case of pediatric treatments. Unfortunately, no method exists in clinics for the computation of the out-of-field dose distributions in proton therapy. To help overcome this limitation, a computational tool has been developed based on the Monte Carlo code TOPAS. The purpose of this work is to evaluate the accuracy of this tool in comparison to experimental data obtained from an anthropomorphic phantom irradiation. An anthropomorphic phantom of a 5-year-old child (ATOM, CIRS) was irradiated for a brain tumor treatment in an IBA Proteus Plus facility using a pencil beam dedicated nozzle. The treatment consisted of three pencil beam scanning fields employing a lucite range shifter. Proton energies ranged from 100 to 165 MeV. A median dose of 50.4 Gy(RBE) with 1.8 Gy(RBE) per fraction was prescribed to the initial planning target volume (PTV), which was located in the cerebellum. Thermoluminescent detectors (TLDs), namely, Li-7-enriched LiF : Mg, Ti (MTS-7) type, were used to detect gamma radiation, which is produced by nuclear reactions, and secondary as well as recoil protons created out-of-field by secondary neutrons. Li-6-enriched LiF : Mg,Cu,P (MCP-6) was combined with Li-7-enriched MCP-7 to measure thermal neutrons. TLDs were calibrated in Co-60 and reported on absorbed dose in water per target dose (µGy/Gy) as well as thermal neutron dose equivalent per target dose (µSv/Gy). Additionally, bubble detectors for personal neutron dosimetry (BD-PND) were used for measuring neutrons (>50 keV), which were calibrated in a Cf-252 neutron beam to report on neutron dose equivalent dose data. The Monte Carlo code TOPAS (version 3.6) was run using a phase-space file containing 1010 histories reaching an average standard statistical uncertainty of less than 0.2% (coverage factor k = 1) on all voxels scoring more than 50% of the maximum dose. The primary beam was modeled following a Fermi-Eyges description of the spot envelope fitted to measurements. For the Monte Carlo simulation, the chemical composition of the tissues represented in ATOM was employed. The dose was tallied as dose-to-water, and data were normalized to the target dose (physical dose) to report on absorbed doses per target dose (mSv/Gy) or neutron dose equivalent per target dose (µSv/Gy), while also an estimate of the total organ dose was provided for a target dose of 50.4 Gy(RBE). Out-of-field doses showed absorbed doses that were 5 to 6 orders of magnitude lower than the target dose. The discrepancy between TLD data and the corresponding scored values in the Monte Carlo calculations involving proton and gamma contributions was on average 18%. The comparison between the neutron equivalent doses between the Monte Carlo simulation and the measured neutron doses was on average 8%. Organ dose calculations revealed the highest dose for the thyroid, which was 120 mSv, while other organ doses ranged from 18 mSv in the lungs to 0.6 mSv in the testes. The proposed computational method for routine calculation of the out-of-the-field dose in proton therapy produces results that are compatible with the experimental data and allow to calculate out-of-field organ doses during proton therapy.

11.
Radiat Oncol ; 17(1): 76, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35428265

RESUMO

BACKGROUND: The irradiation of breast cancer patients with included internal mammary lymph nodes challenges radiation planning with regard to robustness and protection of OARs. In this publication, a feasible hybrid radiation technique is presented with a retrospective dosimetric and radiobiological analysis of patient data of our institute from 2016 to 2020 and robustness analysis. METHODS: The proposed hybrid irradiation technique consists of two IMRT tangents and two partial VMAT fields. The retrospective dosimetric and radiobiological evaluation are made for 217 patient treatments (right- and left-sided). The robustness is evaluated regarding an artificial swelling from 0.4 to 1.5 cm for a random example patient and compared to a pure VMAT planning technique with use of a virtual bolus. The out of field stray dose is calculated for a selected patient plan and compared to alternative radiation techniques. RESULTS: The coverage D95% of the PTVEval (with breast swelling of 1.5 cm) changes for the hybrid plan from 96.1 to 92.1% of prescribed dose and for the pure VMAT plan from 94.3 to 87%. The retrospective dosimetric evaluation of patient irradiations reveals a Dmean for total lung 6.5 ± 0.9 Gy (NTCP[Semenenko 2008] 2.8 ± 0.5%), ipsilateral lung 10.9 ± 1.5 Gy, contralateral lung 2.2 ± 0.6 Gy, heart 2.1 ± 1.1 Gy (ERR[Schneider 2017] 0.02 ± 0.17%) and contralateral breast 1.7 ± 0.6 Gy. The scatter dose of the hybrid irradiation technique is higher than for pure VMAT and lower than for pure IMRT irradiation. CONCLUSIONS: The feasibility of the proposed planning technique is shown by treating many patients with this technique at our radiotherapy department. The hybrid radiation technique shows a good sparing of the OARs in the retrospective analysis and is robust with regards to a breast swelling of up to 1.5 cm. The slightly higher stray dose of the hybrid technique compared to a pure VMAT technique originates from higher number of MUs and lower conformity.


Assuntos
Neoplasias da Mama , Radioterapia de Intensidade Modulada , Neoplasias da Mama/radioterapia , Feminino , Humanos , Linfonodos , Órgãos em Risco/efeitos da radiação , Técnicas de Planejamento , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos
13.
Z Med Phys ; 32(2): 143-148, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34119384

RESUMO

BACKGROUND: It is shown that tumour volume distributions can yield information on two aspects of cancer research: tumour induction and tumour control. MATERIALS AND METHODS: From the hypothesis that the intrinsic distribution of breast cancer volumes follows an exponential distribution, firstly the probability density function of tumour growth time was deduced via a mathematical transformation of the probability density functions of tumour volumes. In a second step, the distribution of tumour volumes was used to model the variation of the clonogenic cell number between patients in order to determine tumour control probabilities for radiotherapy patients. RESULTS: Distribution of lag times, i.e. the time from the appearance of the first fully malignant cell until a clinically observable cancer, can be used to deduce the probability of tumour induction as a function of patient age. The integration of the volume variation with a Poisson-TCP model results in a logistic function which explains population-averaged survival data of radiotherapy patients. CONCLUSIONS: The inclusion of tumour volume distributions into the TCP formalism enables a direct link to be deduced between a cohort TCP model (logistic) and a TCP model for individual patients (Poisson). The TCP model can be applied to non-uniform tumour dose distributions.


Assuntos
Neoplasias , Humanos , Neoplasias/patologia , Neoplasias/radioterapia , Probabilidade , Dosagem Radioterapêutica , Carga Tumoral
14.
Z Med Phys ; 32(1): 120-128, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32505460

RESUMO

PURPOSE: Proton computed (transmission) tomography (pCT) refers to the process of imaging an object by letting protons pass through it, while measuring their energy after, and their position and (optionally) direction both before and after their traversal through that object. The so far experimental technique has potential to improve treatment planning of proton therapy by enabling the direct acquisition of a proton stopping power map of tissue, thus removing the need to obtain it by converting X-ray CT attenuation data and thereby eliminating uncertainties which arise in the mentioned conversion process. The image reconstruction in pCT requires accurate estimates of the proton trajectories. In experimental pCT detector setups where the direction of the protons is not measured, the air gap between the detector planes and the imaged object worsens the spatial resolution of the image obtained. In this work we determined the mean proton paths and the corresponding spatial uncertainty, taking into account the presence of the air gap. METHODS: We used Monte Carlo simulations of radiation transport to systematically investigate the effect of the air gap size between detector and patient on the spatial resolution of proton (ion) computed tomography for protons with an energy of 200MeV and 250MeV as well as for helium ions (He-4) with an energy of 798MeV. For the simulations we used TOPAS which itself is based on Geant4. RESULTS: For all particles, which are detected at the same entrance and exit coordinate, the average ion path and the corresponding standard deviation was computed. From this information, the dependence of the spatial resolution on the air gap size and the angular confusion of the particle beam was inferred. CONCLUSION: The presence of the airgap does not pose a problem for perfect fan beams. In realistic scenarios, where the initial angular confusion is around 5mrad and for typical air gap sizes up to 10cm, using an energy of 200MeV a spatial resolution of about 1.6mm can be achieved. Using protons with E=250MeV a spatial resolution of about 1.1mm and using helium ions (He-4) with E=798MeV even a spatial resolution below 0.7mm respectively is attainable.


Assuntos
Terapia com Prótons , Prótons , Hélio , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Tomografia , Tomografia Computadorizada por Raios X/métodos
15.
Z Med Phys ; 32(2): 159-172, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34301443

RESUMO

For the epidemiological evaluation of long-term side effects of radiotherapy patients, it is important to know the doses to organs and tissues everywhere in the patient. Computed tomography (CT) images of the patients which contain the anatomical information are sometimes available for each treated patient. However, the available CT scans usually cover only the treated volume of the patient including the target and surrounding anatomy. To overcome this limitation, in this work we describe the development of a software tool using the Varian Eclipse Scripting API for extending a partial-body CT to a whole-body representation in the treatment planning system for dose calculation. The whole-body representation is created by fusing the partial-body CT with a similarly sized whole-body computational phantom selected from a library containing 64 phantoms of different heights, weights, and genders. The out-of-field dose is calculated with analytical models from the literature and merged with the treatment planning system-calculated dose. To test the method, the out-of-field dose distributions on the computational phantoms were compared to dose calculations on whole-body patient CTs. The mean doses, D2% and D98% were compared in 26 organs and tissues for 14 different treatment plans in 5 patients using 3D-CRT, IMRT, VMAT, coplanar and non-coplanar techniques. From these comparisons we found that mean relative differences between organ doses ranged from -10% and +20% with standard deviations of up to 40%. The developed method will help epidemiologists and researchers estimate organ doses outside the treated volume when only limited treatment planning CT information is available.


Assuntos
Radioterapia Conformacional , Radioterapia de Intensidade Modulada , Imagem Corporal , Feminino , Humanos , Masculino , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Radioterapia de Intensidade Modulada/métodos
16.
Int Arch Otorhinolaryngol ; 25(2): e179-e184, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33968217

RESUMO

Introduction Squamous cell Carcinoma of the Head and Neck (HNSCC) is the most common tumor entity of malignant processes in the head and neck area. Due to the metastasizing behavior of these tumors, the staging is indispensable for the treatment planning and requires imaging techniques, which are sensitive, specific, and as far as possible cost-effective, to benefit ultimately the patient and to ensure optimal care. Objectives The aim of the present study is to compare the clinical examination including palpation, ultrasound and computed tomography (CT)/magnetic resonance imaging (MRI) for the diagnosis of neck metastases to make the correct indication for a neck dissection. Methods Data from 286 patients with HNSCC were analyzed for neck metastases to determine which diagnostic tool is the best to answer the question if a neck dissection is necessary or not. Each study method was examined retrospectively by comparing sensitivity, specificity, the positive/negative predictive value, the positive likelihood ratio and the diagnostic accuracy. Results The ultrasound showed a sensitivity of 91.52%, a specificity of 61.67%, a positive/negative predictive value of 76.65%/84.09%, a positive likelihood ratio of 2.39 and a diagnostic accuracy of 78.95%. The clinical examination showed a sensitivity of 75.76%, a specificity of 66.12%, a positive/negative predictive value of 75.30%/66.67%, a positive likelihood ratio of 2.24 and a diagnostic accuracy of 71.68%. The CT/MRI showed a sensitivity of 78.66%, a specificity of 62.50%, a positive/negative predictive value of 74.14%/68.18%, a positive likelihood ratio of 2.10 and a diagnostic accuracy of 71.83%. Radiographically, ultrasound, as well as the clinical examination, could be judged to be free from radiation load and side effects from the contrast medium. The high dependence on the investigator when using ultrasound made reproducibility of the results difficult. Conclusions It could be shown that ultrasound was the diagnostic tool with the highest sensitivity, positive/negative predictive value, positive likelihood ratio and diagnostic accuracy by detecting and interpreting metastases in the head and neck region correctly. Whether a neck dissection should be performed depends to a large extent on the ultrasound findings.

17.
Int J Radiat Oncol Biol Phys ; 110(5): 1530-1537, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33838213

RESUMO

PURPOSE: Tumor control probability (TCP) models based on Poisson statistics characterize the distribution of surviving clonogens. Thus enabling the calculation of TCP for individuals. To mathematically describe clinically observed survival data of patient cohorts it is necessary to extend the Poisson TCP model. This is typically done by either incorporating variations of model parameters or by using an empirical logistic model. The purpose of this work is the development of an analytical population TCP model by mechanistic extension of the Possion model. METHODS AND MATERIALS: The frequency distribution of gross tumor volumes was used to incorporate tumor volume variations into the TCP model. Additionally the tumor cell density variation was incorporated. Both versions of the population TCP model were fitted to clinical data and compared to existing literature. RESULTS: It was shown that clinically observed brain tumor volumes of dogs undergoing radiotherapy are distributed according to an exponential distribution. The average gross tumor volume size was 3.37 cm3. Fitting the population TCP model including the volume variation using linear-quadratic and track-event model yieldedα=0.36Gy--1a, ß=0.045Gy--2, a=0.9yr--1, TD=5.0d,and p=.36Gy--1, q=0.48Gy--1, a=0.80yr--1, TD=3.0d, respectively. Fitting the population TCP model including both the volume and cell density variation yielded α=0.43Gy--1, ß=0.0537Gy--2, a=2.0yr--1, TD=3.0d, σ=2.5,and p=.43Gy--1, q=0.55Gy--1, a=2.0yr--1, TD=2.0d, σ=3.0,respectively. CONCLUSIONS: Two sets of radiobiological parameters were obtained which can be used for quantifying the TCP for radiation therapy of brain tumors in dogs. We established a mechanistic link between the poisson statistics based individual TCP model and the logistic TCP model. This link can be used to determine the radiobiological parameters of patient specific TCP models from published fits of logistic models to cohorts of patients.


Assuntos
Neoplasias Encefálicas/veterinária , Doenças do Cão/radioterapia , Modelos Estatísticos , Distribuição de Poisson , Carga Tumoral , Animais , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/radioterapia , Contagem de Células , Sobrevivência Celular , Doenças do Cão/mortalidade , Doenças do Cão/patologia , Cães , Modelos Lineares , Hipofracionamento da Dose de Radiação , Radiobiologia
18.
Radiat Environ Biophys ; 60(2): 213-231, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33929575

RESUMO

An alternative approach that is particularly suitable for the radiation health risk assessment (HRA) of astronauts is presented. The quantity, Radiation Attributed Decrease of Survival (RADS), representing the cumulative decrease in the unknown survival curve at a certain attained age, due to the radiation exposure at an earlier age, forms the basis for this alternative approach. Results are provided for all solid cancer plus leukemia incidence RADS from estimated doses from theoretical radiation exposures accumulated during long-term missions to the Moon or Mars. For example, it is shown that a 1000-day Mars exploration mission with a hypothetical mission effective dose of 1.07 Sv at typical astronaut ages around 40 years old, will result in the probability of surviving free of all types of solid cancer and leukemia until retirement age (65 years) being reduced by 4.2% (95% CI 3.2; 5.3) for males and 5.8% (95% CI 4.8; 7.0) for females. RADS dose-responses are given, for the outcomes for incidence of all solid cancer, leukemia, lung and female breast cancer. Results showing how RADS varies with age at exposure, attained age and other factors are also presented. The advantages of this alternative approach, over currently applied methodologies for the long-term radiation protection of astronauts after mission exposures, are presented with example calculations applicable to European astronaut occupational HRA. Some tentative suggestions for new types of occupational risk limits for space missions are given while acknowledging that the setting of astronaut radiation-related risk limits will ultimately be decided by the Space Agencies. Suggestions are provided for further work which builds on and extends this new HRA approach, e.g., by eventually including non-cancer effects and detailed space dosimetry.


Assuntos
Neoplasias Induzidas por Radiação/epidemiologia , Doenças Profissionais/epidemiologia , Medição de Risco/métodos , Voo Espacial , Adulto , Idoso , Idoso de 80 Anos ou mais , Astronautas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Exposição Ocupacional , Exposição à Radiação , Proteção Radiológica
19.
Int. arch. otorhinolaryngol. (Impr.) ; 25(2): 179-184, Apr.-June 2021. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1286746

RESUMO

Abstract Introduction Squamous cell Carcinoma of the Head and Neck (HNSCC) is the most common tumor entity of malignant processes in the head and neck area. Due to the metastasizing behavior of these tumors, the staging is indispensable for the treatment planning and requires imaging techniques, which are sensitive, specific, and as far as possible cost-effective, to benefit ultimately the patient and to ensure optimal care. Objectives The aim of the present study is to compare the clinical examination including palpation, ultrasound and computed tomography (CT)/magnetic resonance imaging (MRI) for the diagnosis of neck metastases to make the correct indication for a neck dissection. Methods Data from 286 patients with HNSCC were analyzed for neck metastases to determine which diagnostic tool is the best to answer the question if a neck dissection is necessary or not. Each study method was examined retrospectively by comparing sensitivity, specificity, the positive/negative predictive value, the positive likelihood ratio and the diagnostic accuracy. Results The ultrasound showed a sensitivity of 91.52%, a specificity of 61.67%, a positive/negative predictive value of 76.65%/84.09%, a positive likelihood ratio of 2.39 and a diagnostic accuracy of 78.95%. The clinical examination showed a sensitivity of 75.76%, a specificity of 66.12%, a positive/negative predictive value of 75.30%/66.67%, a positive likelihood ratio of 2.24 and a diagnostic accuracy of 71.68%. The CT/MRI showed a sensitivity of 78.66%, a specificity of 62.50%, a positive/negative predictive value of 74.14%/68.18%, a positive likelihood ratio of 2.10 and a diagnostic accuracy of 71.83%. Radiographically, ultrasound, as well as the clinical examination, could be judged to be free from radiation load and side effects from the contrast medium. The high dependence on the investigator when using ultrasound made reproducibility of the results difficult. Conclusions It could be shown that ultrasound was the diagnostic tool with the highest sensitivity, positive/negative predictive value, positive likelihood ratio and diagnostic accuracy by detecting and interpreting metastases in the head and neck region correctly. Whether a neck dissection should be performed depends to a large extent on the ultrasound findings.

20.
Life Sci Space Res (Amst) ; 28: 41-56, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33612179

RESUMO

The risk assessment quantities called lifetime attributable risk (LAR) and risk of exposure-induced cancer (REIC) are used to calculate the cumulative cancer incidence risks for astronauts, attributable to radiation exposure accumulated during long term lunar and Mars missions. These risk quantities are based on the most recently published epidemiological data on the Life Span Study (LSS) of Japanese A-bomb survivors, who were exposed to γ-rays and neutrons. In order to analyze the impact of a different neutron RBE on the risk quantities, a model for the neutron relative biological effectiveness (RBE) relative to gammas in the LSS is developed based on an older dataset with less follow-up time. Since both risk quantities are based on uncertain quantities, such as survival curves, and REIC includes deterministic radiation induced non-cancer mortality risks, modelled with data based on the general population, the risks for astronauts may not be optimally estimated. The suitability of these risk assessment measures for the use of cancer risk calculation for astronauts is discussed. The work presented here shows that the use of a higher neutron RBE than the value of 10, traditionally used in the LSS risk models, can reduce the risks up to almost 50%. Additionally, including an excess absolute risk (EAR) baseline scaling also increases the risks by between 0.4% and 8.1% for the space missions considered in this study. Using just an EAR model instead of an equally weighted EAR and excess relative risk (ERR) model can decrease the cumulative risks for the considered missions by between 0.4% and 4.1% if no EAR baseline scaling is applied. If EAR baseline scaling is included, the calculated risks with the EAR- and the mixed model, as well as the risks calculated with just the ERR model are almost identical and only small differences in the uncertainties are visible.


Assuntos
Raios gama/efeitos adversos , Neoplasias Induzidas por Radiação/epidemiologia , Nêutrons/efeitos adversos , Astronautas , Feminino , Humanos , Masculino , Modelos Estatísticos , Doses de Radiação , Exposição à Radiação/efeitos adversos , Eficiência Biológica Relativa , Medição de Risco/métodos , Voo Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA