Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(20): e2219683120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155904

RESUMO

During mouse gametogenesis, germ cells derived from the same progenitor are connected via intercellular bridges forming germline cysts, within which asymmetrical or symmetrical cell fate occurs in female and male germ cells, respectively. Here, we have identified branched cyst structures in mice, and investigated their formation and function in oocyte determination. In fetal female cysts, 16.8% of the germ cells are connected by three or four bridges, namely branching germ cells. These germ cells are preferentially protected from cell death and cyst fragmentation and accumulate cytoplasm and organelles from sister germ cells to become primary oocytes. Changes in cyst structure and differential cell volumes among cyst germ cells suggest that cytoplasmic transport in germline cysts is conducted in a directional manner, in which cellular content is first transported locally between peripheral germ cells and further enriched in branching germ cells, a process causing selective germ cell loss in cysts. Cyst fragmentation occurs extensively in female cysts, but not in male cysts. Male cysts in fetal and adult testes have branched cyst structures, without differential cell fates between germ cells. During fetal cyst formation, E-cadherin (E-cad) junctions between germ cells position intercellular bridges to form branched cysts. Disrupted junction formation in E-cad-depleted cysts led to an altered ratio in branched cysts. Germ cell-specific E-cad knockout resulted in reductions in primary oocyte number and oocyte size. These findings shed light on how oocyte fate is determined within mouse germline cysts.


Assuntos
Cistos , Oócitos , Masculino , Feminino , Animais , Camundongos , Células Germinativas , Citoplasma , Organelas , Gametogênese , Oogênese
2.
Dev Biol ; 480: 78-90, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34416224

RESUMO

Mistakes in trunk neural crest (NC) cell migration may lead to birth defects of the sympathetic nervous system (SNS) and neuroblastoma (NB) cancer. Receptor tyrosine kinase B (TrkB) and its ligand BDNF critically regulate NC cell migration during normal SNS development and elevated expression of TrkB is correlated with high-risk NB patients. However, in the absence of a model with in vivo interrogation of human NB cell and gene expression dynamics, the mechanistic role of TrkB in NB disease progression remains unclear. Here, we study the functional relationship between TrkB, cell invasion and plasticity of human NB cells by taking advantage of our validated in vivo chick embryo transplant model. We find that LAN5 (high TrkB) and SHSY5Y (moderate TrkB) human NB cells aggressively invade host embryos and populate typical NC targets, however loss of TrkB function significantly reduces cell invasion. In contrast, NB1643 (low TrkB) cells remain near the transplant site, but over-expression of TrkB leads to significant cell invasion. Invasive NB cells show enhanced expression of genes indicative of the most invasive host NC cells. In contrast, transplanted human NB cells down-regulate known NB tumor initiating and stem cell markers. Human NB cells that remain within the dorsal neural tube transplant also show enhanced expression of cell differentiation genes, resulting in an improved disease outcome as predicted by a computational algorithm. These in vivo data support TrkB as an important biomarker and target to control NB aggressiveness and identify the chick embryonic trunk neural crest microenvironment as a source of signals to drive NB to a less aggressive state, likely acting at the dorsal neural tube.


Assuntos
Glicoproteínas de Membrana/metabolismo , Invasividade Neoplásica/genética , Crista Neural/embriologia , Receptor trkB/metabolismo , Animais , Diferenciação Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Plasticidade Celular/genética , Transformação Celular Neoplásica/metabolismo , Embrião de Galinha , Expressão Gênica , Humanos , Glicoproteínas de Membrana/genética , Crista Neural/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo , Proteínas Tirosina Quinases/metabolismo , Receptor trkB/genética , Transdução de Sinais/genética , Microambiente Tumoral/genética
3.
Commun Biol ; 3(1): 789, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33339901

RESUMO

It has become increasingly apparent that G protein-coupled receptor (GPCR) localization is a master regulator of cell signaling. However, the molecular mechanisms involved in this process are not well understood. To date, observations of intracellular GPCR activation can be organized into two categories: a dependence on OCT3 cationic channel-permeable ligands or the necessity of endocytic trafficking. Using CXC chemokine receptor 4 (CXCR4) as a model, we identified a third mechanism of intracellular GPCR signaling. We show that independent of membrane permeable ligands and endocytosis, upon stimulation, plasma membrane and internal pools of CXCR4 are post-translationally modified and collectively regulate EGR1 transcription. We found that ß-arrestin-1 (arrestin 2) is necessary to mediate communication between plasma membrane and internal pools of CXCR4. Notably, these observations may explain that while CXCR4 overexpression is highly correlated with cancer metastasis and mortality, plasma membrane localization is not. Together these data support a model where a small initial pool of plasma membrane-localized GPCRs are capable of activating internal receptor-dependent signaling events.


Assuntos
Membrana Celular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , beta-Arrestinas/metabolismo , Quimiocina CXCL12/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Modelos Biológicos , Mutação , Fosforilação , Ligação Proteica , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores CXCR4/química , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , beta-Arrestinas/genética
5.
J Neurosci ; 39(11): 2091-2101, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30655354

RESUMO

Central output of gonadotropin-releasing hormone (GnRH) neurons controls fertility and is sculpted by sex-steroid feedback. A switch of estradiol action from negative to positive feedback initiates a surge of GnRH release, culminating in ovulation. In ovariectomized mice bearing constant-release estradiol implants (OVX+E), GnRH neuron firing is suppressed in the morning (AM) by negative feedback and activated in the afternoon (PM) by positive feedback; no time-of-day-dependent changes occur in OVX mice. In this daily surge model, GnRH neuron intrinsic properties are shifted to favor increased firing during positive feedback. It is unclear whether this shift and the observed concomitant increase in GABAergic transmission, which typically excites GnRH neurons, are independently sufficient for increasing GnRH neuron firing rate during positive feedback or whether both are needed. To test this, we used dynamic clamp to inject selected previously recorded trains of GABAergic postsynaptic conductances (PSgs) collected during the different feedback states of the daily surge model into GnRH neurons from OVX, OVX+E AM, and OVX+E PM mice. PSg trains mimicking positive feedback initiated more action potentials in cells from OVX+E PM mice than negative feedback or OVX (open feedback loop) trains in all three animal models, but the positive-feedback train was most effective when applied to cells during positive feedback. In silico studies of model GnRH neurons in which >1000 PSg trains were tested exhibited the same results. These observations support the hypothesis that GnRH neurons integrate fast-synaptic and intrinsic changes to increase firing rates during positive feedback.SIGNIFICANCE STATEMENT Infertility affects 15%-20% of couples; failure to ovulate is a common cause. Understanding how the brain controls ovulation is critical for new developments in both infertility treatment and contraception. Ovarian estradiol alters both the intrinsic properties of gonadotropin-releasing hormone (GnRH) neurons and synaptic inputs to these cells coincident with production of sustained GnRH release that ultimately triggers ovulation. We demonstrate here using dynamic clamp and mathematical modeling that estradiol-induced shifts in synaptic transmission alone can increase firing output, but that the intrinsic properties of GnRH neurons during positive feedback further poise these cells for increased response to higher frequency synaptic transmission. These data suggest that GnRH neurons integrate fast-synaptic and intrinsic changes to increase firing rates during the preovulatory GnRH surge.


Assuntos
Encéfalo/fisiologia , Estradiol/fisiologia , Retroalimentação Fisiológica , Hormônio Liberador de Gonadotropina/fisiologia , Neurônios/fisiologia , Ovulação/fisiologia , Transmissão Sináptica , Potenciais de Ação , Animais , Feminino , Camundongos Transgênicos , Modelos Neurológicos , Ovariectomia , Ácido gama-Aminobutírico/fisiologia
6.
Biophys Chem ; 238: 30-38, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29734136

RESUMO

Genomic information from human patient samples of pediatric neuroblastoma cancers and known outcomes have led to specific gene lists put forward as high risk for disease progression. However, the reliance on gene expression correlations rather than mechanistic insight has shown limited potential and suggests a critical need for molecular network models that better predict neuroblastoma progression. In this study, we construct and simulate a molecular network of developmental genes and downstream signals in a 6-gene input logic model that predicts a favorable/unfavorable outcome based on the outcome of the four cell states including cell differentiation, proliferation, apoptosis, and angiogenesis. We simulate the mis-expression of the tyrosine receptor kinases, trkA and trkB, two prognostic indicators of neuroblastoma, and find differences in the number and probability distribution of steady state outcomes. We validate the mechanistic model assumptions using RNAseq of the SHSY5Y human neuroblastoma cell line to define the input states and confirm the predicted outcome with antibody staining. Lastly, we apply input gene signatures from 77 published human patient samples and show that our model makes more accurate disease outcome predictions for early stage disease than any current neuroblastoma gene list. These findings highlight the predictive strength of a logic-based model based on developmental genes and offer a better understanding of the molecular network interactions during neuroblastoma disease progression.


Assuntos
Lógica , Modelos Biológicos , Neuroblastoma/genética , Linhagem Celular Tumoral , Humanos , Neuroblastoma/metabolismo
7.
Bull Math Biol ; 80(5): 1310-1344, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28455685

RESUMO

The development of network inference methodologies that accurately predict connectivity in dysregulated pathways may enable the rational selection of patient therapies. Accurately inferring an intracellular network from data remains a very challenging problem in molecular systems biology. Living cells integrate extremely robust circuits that exhibit significant heterogeneity, but still respond to external stimuli in predictable ways. This phenomenon allows us to introduce a network inference methodology that integrates measurements of protein activation from perturbation experiments. The methodology relies on logic-based networks to provide a predictive approximation of the transfer of signals in a network. The approach presented was validated in silico with a set of test networks and applied to investigate the epidermal growth factor receptor signaling of a breast epithelial cell line, MFC10A. In our analysis, we predict the potential signaling circuitry most likely responsible for the experimental readouts of several proteins in the mitogen-activated protein kinase and phosphatidylinositol-3 kinase pathways. The approach can also be used to identify additional necessary perturbation experiments to distinguish between a set of possible candidate networks.


Assuntos
Modelos Biológicos , Transdução de Sinais , Algoritmos , Linhagem Celular , Simulação por Computador , Receptores ErbB/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Conceitos Matemáticos
8.
J Neurosci ; 38(5): 1249-1263, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29263236

RESUMO

Gonadotropin-releasing hormone (GnRH) neurons produce the central output controlling fertility and are regulated by steroid feedback. A switch from estradiol negative to positive feedback initiates the GnRH surge, ultimately triggering ovulation. This occurs on a daily basis in ovariectomized, estradiol-treated (OVX+E) mice; GnRH neurons are suppressed in the morning and activated in the afternoon. To test the hypotheses that estradiol and time of day signals alter GnRH neuron responsiveness to stimuli, GFP-identified GnRH neurons in brain slices from OVX+E or OVX female mice were recorded during the morning or afternoon. No differences were observed in baseline membrane potential. Current-clamp revealed GnRH neurons fired more action potentials in response to current injection during positive feedback relative to all other groups, which were not different from each other despite reports of differing ionic conductances. Kisspeptin increased GnRH neuron response in cells from OVX and OVX+E mice in the morning but not afternoon. Paradoxically, excitability in kisspeptin knock-out mice was similar to the maximum observed in control mice but was unchanged by time of day or estradiol. A mathematical model applying a Markov Chain Monte Carlo method to estimate probability distributions for estradiol- and time of day-dependent parameters was used to predict intrinsic properties underlying excitability changes. A single identifiable distribution of solutions accounted for similar GnRH neuron excitability in all groups other than positive feedback despite different underlying conductance properties; this was attributable to interdependence of voltage-gated potassium channel properties. In contrast, redundant solutions may explain positive feedback, perhaps indicative of the importance of this state for species survival.SIGNIFICANCE STATEMENT Infertility affects 15%-20% of couples; failure to ovulate is a common cause. Understanding how the brain controls ovulation is critical for new developments in both infertility treatment and contraception. Gonadotropin-releasing hormone (GnRH) neurons are the final common pathway for central neural control of ovulation. We studied how estradiol feedback regulates GnRH excitability, a key determinant of neural firing rate using laboratory and computational approaches. GnRH excitability is upregulated during positive feedback, perhaps driving increased neural firing rate at this time. Kisspeptin increased GnRH excitability and was essential for estradiol regulation of excitability. Modeling predicts that multiple combinations of changes to GnRH intrinsic conductances can produce the firing response in positive feedback, suggesting the brain has many ways to induce ovulation.


Assuntos
Estradiol/fisiologia , Hormônio Liberador de Gonadotropina/fisiologia , Kisspeptinas/fisiologia , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Animais , Retroalimentação Fisiológica/fisiologia , Feminino , Kisspeptinas/genética , Cadeias de Markov , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Knockout , Modelos Neurológicos , Modelos Teóricos , Método de Monte Carlo , Condução Nervosa/efeitos dos fármacos , Ovariectomia , Técnicas de Patch-Clamp
9.
Cancer Res ; 77(5): 1063-1074, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27932399

RESUMO

Small cell lung cancer (SCLC) is a devastating disease due to its propensity for early invasion and refractory relapse after initial treatment response. Although these aggressive traits have been associated with phenotypic heterogeneity, our understanding of this association remains incomplete. To fill this knowledge gap, we inferred a set of 33 transcription factors (TF) associated with gene signatures of the known neuroendocrine/epithelial (NE) and non-neuroendocrine/mesenchymal-like (ML) SCLC phenotypes. The topology of this SCLC TF network was derived from prior knowledge and was simulated using Boolean modeling. These simulations predicted that the network settles into attractors, or TF expression patterns, that correlate with NE or ML phenotypes, suggesting that TF network dynamics underlie the emergence of heterogeneous SCLC phenotypes. However, several cell lines and patient tumor specimens failed to correlate with either the NE or ML attractors. By flow cytometry, single cells within these cell lines simultaneously expressed surface markers of both NE and ML differentiation, confirming the existence of a "hybrid" phenotype. Upon exposure to standard-of-care cytotoxic drugs or epigenetic modifiers, NE and ML cell populations converged toward the hybrid state, suggesting possible escape from treatment. Our findings indicate that SCLC phenotypic heterogeneity can be specified dynamically by attractor states of a master regulatory TF network. Thus, SCLC heterogeneity may be best understood as states within an epigenetic landscape. Understanding phenotypic transitions within this landscape may provide insights to clinical applications. Cancer Res; 77(5); 1063-74. ©2016 AACR.


Assuntos
Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Fatores de Transcrição/genética , Diferenciação Celular , Linhagem Celular Tumoral , Expressão Gênica , Heterogeneidade Genética , Humanos , Neoplasias Pulmonares/metabolismo , Fenótipo , Carcinoma de Pequenas Células do Pulmão/metabolismo , Fatores de Transcrição/metabolismo
10.
J Biol Chem ; 291(26): 13715-29, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27129239

RESUMO

Inflammatory breast cancer (IBC) is an extremely lethal cancer that rapidly metastasizes. Although the molecular attributes of IBC have been described, little is known about the underlying metabolic features of the disease. Using a variety of metabolic assays, including (13)C tracer experiments, we found that SUM149 cells, the primary in vitro model of IBC, exhibit metabolic abnormalities that distinguish them from other breast cancer cells, including elevated levels of N-acetylaspartate, a metabolite primarily associated with neuronal disorders and gliomas. Here we provide the first evidence of N-acetylaspartate in breast cancer. We also report that the oncogene RhoC, a driver of metastatic potential, modulates glutamine and N-acetylaspartate metabolism in IBC cells in vitro, revealing a novel role for RhoC as a regulator of tumor cell metabolism that extends beyond its well known role in cytoskeletal rearrangement.


Assuntos
Ácido Aspártico/análogos & derivados , Glutamina/metabolismo , Neoplasias Inflamatórias Mamárias/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Ácido Aspártico/biossíntese , Ácido Aspártico/genética , Linhagem Celular Tumoral , Feminino , Glutamina/genética , Humanos , Neoplasias Inflamatórias Mamárias/genética , Neoplasias Inflamatórias Mamárias/patologia , Proteínas de Neoplasias/genética , Proteínas rho de Ligação ao GTP/genética , Proteína de Ligação a GTP rhoC
11.
J Biol Chem ; 291(6): 3030-42, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26601958

RESUMO

UBE2W ubiquitinates N termini of proteins rather than internal lysine residues, showing a preference for substrates with intrinsically disordered N termini. The in vivo functions of this intriguing E2, however, remain unknown. We generated Ube2w germ line KO mice that proved to be susceptible to early postnatal lethality without obvious developmental abnormalities. Although the basis of early death is uncertain, several organ systems manifest changes in Ube2w KO mice. Newborn Ube2w KO mice often show altered epidermal maturation with reduced expression of differentiation markers. Mirroring higher UBE2W expression levels in testis and thymus, Ube2w KO mice showed a disproportionate decrease in weight of these two organs (~50%), suggesting a functional role for UBE2W in the immune and male reproductive systems. Indeed, Ube2w KO mice displayed sustained neutrophilia accompanied by increased G-CSF signaling and testicular vacuolation associated with decreased fertility. Proteomic analysis of a vulnerable organ, presymptomatic testis, showed a preferential accumulation of disordered proteins in the absence of UBE2W, consistent with the view that UBE2W preferentially targets disordered polypeptides. These mice further allowed us to establish that UBE2W is ubiquitously expressed as a single isoform localized to the cytoplasm and that the absence of UBE2W does not alter cell viability in response to various stressors. Our results establish that UBE2W is an important, albeit not essential, protein for early postnatal survival and normal functioning of multiple organ systems.


Assuntos
Epiderme , Anormalidades da Pele , Enzimas de Conjugação de Ubiquitina , Animais , Epiderme/anormalidades , Epiderme/enzimologia , Epiderme/imunologia , Transtornos Leucocíticos/congênito , Transtornos Leucocíticos/enzimologia , Transtornos Leucocíticos/genética , Transtornos Leucocíticos/imunologia , Masculino , Camundongos , Camundongos Knockout , Anormalidades da Pele/enzimologia , Anormalidades da Pele/genética , Anormalidades da Pele/imunologia , Testículo/enzimologia , Testículo/imunologia , Timo/enzimologia , Timo/imunologia , Enzimas de Conjugação de Ubiquitina/deficiência , Enzimas de Conjugação de Ubiquitina/imunologia
12.
Cancer Inform ; 13(Suppl 5): 1-12, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25392689

RESUMO

In a tumor cell, the development of acquired therapeutic resistance and the ability to survive in extracellular environments that differ from the primary site are the result of molecular adaptations in potentially highly plastic molecular networks. The accurate prediction of intracellular networks in a tumor remains a difficult problem in cancer informatics. In order to make truly rational patient-driven therapeutic decisions, it will be critical to develop methodologies that can accurately infer the molecular circuitry in the cells of a specific tumor. Despite enormous heterogeneity, cellular networks elicit deterministic digital-like responses. We discuss the use and limitations of methodologies that model molecular networks in cancer cells as a digital circuit. We also develop a network model of Notch signaling in colon cancer using a novel reverse engineering logic-based method and published western blot data to elucidate the interactions likely present in the circuits of the SW480 colon cancer cell line. Within this framework, we make predictions related to the role that honokiol may be playing as an anti-cancer drug.

13.
Biophys Chem ; 193-194: 9-19, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25048259

RESUMO

We propose three new reaction mechanisms for competitive inhibition of protein aggregation for the two-step model of protein aggregation. The first mechanism is characterized by the inhibition of native protein, the second is characterized by the inhibition of aggregation-prone protein and the third mechanism is characterized by the mixed inhibition of native and aggregation-prone proteins. Rate equations are derived for these mechanisms, and a method is described for plotting kinetic results to distinguish these three types of inhibitors. The derived rate equations provide a simple way of estimating the inhibition constant of native or aggregation-prone protein inhibitors in protein aggregation. The new approach is used to estimate the inhibition constants of different peptide inhibitors of insulin aggregation.


Assuntos
Insulina/química , Modelos Químicos , Peptídeos/química , Sequência de Aminoácidos , Ligação Competitiva , Humanos , Cinética , Dados de Sequência Molecular , Peptídeos/síntese química , Agregados Proteicos , Ligação Proteica
14.
Integr Biol (Camb) ; 6(3): 243-57, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24480852

RESUMO

The definition, regulation and function of intestinal stem cells (ISCs) has been hotly debated. Recent discoveries have started to clarify the nature of ISCs, but many questions remain. This review discusses the current advances and controversies of ISC biology as well as theoretical compartmental models that have been coupled with in vivo experimentation to investigate the mechanisms of ISC dynamics during homeostasis, tumorigenesis, repair and development. We conclude our review by discussing the key lingering questions in the field and proposing how many of these questions can be addressed using both compartmental models and experimental techniques.


Assuntos
Células-Tronco Adultas/citologia , Intestinos/citologia , Modelos Biológicos , Células-Tronco Adultas/classificação , Células-Tronco Adultas/fisiologia , Animais , Biomarcadores/metabolismo , Carcinogênese , Diferenciação Celular , Homeostase , Humanos , Intestinos/fisiologia , Intestinos/efeitos da radiação , Celulas de Paneth/citologia , Celulas de Paneth/fisiologia , Nicho de Células-Tronco
15.
Integr Biol (Camb) ; 4(11): 1323-37, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23072820

RESUMO

Highly complex molecular networks, which play fundamental roles in almost all cellular processes, are known to be dysregulated in a number of diseases, most notably in cancer. As a consequence, there is a critical need to develop practical methodologies for constructing and analysing molecular networks at a systems level. Mathematical models built with continuous differential equations are an ideal methodology because they can provide a detailed picture of a network's dynamics. To be predictive, however, differential equation models require that numerous parameters be known a priori and this information is almost never available. An alternative dynamical approach is the use of discrete logic-based models that can provide a good approximation of the qualitative behaviour of a biochemical system without the burden of a large parameter space. Despite their advantages, there remains significant resistance to the use of logic-based models in biology. Here, we address some common concerns and provide a brief tutorial on the use of logic-based models, which we motivate with biological examples.


Assuntos
Modelos Biológicos , Biologia de Sistemas , Animais , Apoptose/genética , Apoptose/fisiologia , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Dano ao DNA , Redes Reguladoras de Genes , Humanos , Cinética , Modelos Logísticos , Redes e Vias Metabólicas
16.
Proc Natl Acad Sci U S A ; 109(39): 15817-22, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-23019366

RESUMO

In the adult intestine, an organized array of finger-like projections, called villi, provide an enormous epithelial surface area for absorptive function. Villi first emerge at embryonic day (E) 14.5 from a previously flat luminal surface. Here, we analyze the cell biology of villus formation and examine the role of paracrine epithelial Hedgehog (Hh) signals in this process. We find that, before villus emergence, tight clusters of Hh-responsive mesenchymal cells form just beneath the epithelium. Cluster formation is dynamic; clusters first form dorsally and anteriorly and spread circumferentially and posteriorly. Statistical analysis of cluster distribution reveals a patterned array; with time, new clusters form in spaces between existing clusters, promoting approximately four rounds of villus emergence by E18.5. Cells within mesenchymal clusters express Patched1 and Gli1, as well as Pdgfrα, a receptor previously shown to participate in villus development. BrdU-labeling experiments show that clusters form by migration and aggregation of Hh-responsive cells. Inhibition of Hh signaling prevents cluster formation and villus development, but does not prevent emergence of villi in areas where clusters have already formed. Conversely, increasing Hh signaling increases the size of villus clusters and results in exceptionally wide villi. We conclude that Hh signals dictate the initial aspects of the formation of each villus by controlling mesenchymal cluster aggregation and regulating cluster size.


Assuntos
Proteínas Hedgehog/metabolismo , Mucosa Intestinal/metabolismo , Transdução de Sinais/fisiologia , Animais , Proteínas Hedgehog/genética , Humanos , Mucosa Intestinal/citologia , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Transgênicos , Receptores Patched , Receptor Patched-1 , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Proteína GLI1 em Dedos de Zinco
17.
J R Soc Interface ; 9(72): 1576-88, 2012 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-22219399

RESUMO

Follow-the-leader chain migration is a striking cell migratory behaviour observed during vertebrate development, adult neurogenesis and cancer metastasis. Although cell-cell contact and extracellular matrix (ECM) cues have been proposed to promote this phenomenon, mechanisms that underlie chain migration persistence remain unclear. Here, we developed a quantitative agent-based modelling framework to test mechanistic hypotheses of chain migration persistence. We defined chain migration and its persistence based on evidence from the highly migratory neural crest model system, where cells within a chain extend and retract filopodia in short-lived cell contacts and move together as a collective. In our agent-based simulations, we began with a set of agents arranged as a chain and systematically probed the influence of model parameters to identify factors critical to the maintenance of the chain migration pattern. We discovered that chain migration persistence requires a high degree of directional bias in both lead and follower cells towards the target. Chain migration persistence was also promoted when lead cells maintained cell contact with followers, but not vice-versa. Finally, providing a path of least resistance in the ECM was not sufficient alone to drive chain persistence. Our results indicate that chain migration persistence depends on the interplay of directional cell movement and biased cell-cell contact.


Assuntos
Comunicação Celular/fisiologia , Movimento Celular/fisiologia , Simulação por Computador , Modelos Biológicos , Crista Neural/embriologia , Neurogênese/fisiologia , Animais , Embrião de Galinha , Crista Neural/citologia
18.
Adv Exp Med Biol ; 736: 179-89, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22161328

RESUMO

Cancer cells exhibit an altered metabolic phenotype, known as the Warburg effect, which is characterized by high rates of glucose uptake and glycolysis, even under aerobic conditions. The Warburg effect appears to be an intrinsic component of most cancers and there is evidence linking cancer progression to mutations, translocations, and alternative splicing of genes that directly code for or have downstream effects on key metabolic enzymes. Many of the same signaling pathways are routinely dysregulated in cancer and a number of important oncogenic signaling pathways play important regulatory roles in central carbon metabolism. Unraveling the complex regulatory relationship between cancer metabolism and signaling requires the application of systems biology approaches. Here we discuss computational approaches for modeling protein signal transduction and metabolism as well as how the regulatory relationship between these two important cellular processes can be combined into hybrid models.


Assuntos
Glucose/metabolismo , Glicólise , Neoplasias/metabolismo , Transdução de Sinais , Biologia Computacional/métodos , Humanos , Cinética , Mutação , Neoplasias/genética , Proteínas/genética , Proteínas/metabolismo , Biologia de Sistemas/métodos
19.
Eur J Oral Sci ; 119 Suppl 1: 35-40, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22243224

RESUMO

Stage-specific expression of ameloblast-specific genes is controlled by differential expression of transcription factors. In addition, ameloblasts follow daily rhythms in their main activities (i.e. enamel protein secretion and enamel mineralization). This time-related control is orchestrated by oscillations of clock proteins involved in the regulation of circadian rhythms. Our aim was to identify the potential links between daily rhythms and developmental controls of ameloblast differentiation. The effects of the transcription factors distal-less homeobox 3 (Dlx3) and runt-related transcription factor 2 (Runx2), and the clock gene nuclear receptor subfamily 1, group D, member 1 (Nr1d1), on secretory and maturation ameloblasts [using stage-specific markers amelogenin (Amelx), enamelin (Enam), and kallikrein-related peptidase 4 (Klk4)] were evaluated in the HAT-7 ameloblast cell line. Amelx and Enam steady-state mRNA expression levels were down-regulated in Runx2 over-expressing cells and up-regulated in Dlx3 over-expressing cells. In contrast, Klk4 mRNA was up-regulated by both Dlx3 and Runx2. Furthermore, a temporal and spatial relationship between clock genes and ameloblast differentiation markers was detected. Of interest, clock genes not only affected rhythmic expression of ameloblast-specific genes but also influenced the expression of Runx2. Multiscale mathematical modeling is being explored to further understand the temporal and developmental controls of ameloblast differentiation. Our study provides novel insights into the regulatory mechanisms sustaining ameloblast differentiation.


Assuntos
Ameloblastos/citologia , Amelogênese/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Ritmo Circadiano/genética , Proteínas do Esmalte Dentário/biossíntese , Regulação da Expressão Gênica , Fatores de Transcrição/genética , Ameloblastos/fisiologia , Amelogenina/biossíntese , Amelogenina/genética , Animais , Proteínas CLOCK/genética , Diferenciação Celular/genética , Linhagem Celular , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Proteínas do Esmalte Dentário/genética , Proteínas de Homeodomínio/genética , Calicreínas/biossíntese , Calicreínas/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Ratos , Ratos Sprague-Dawley
20.
Cancer Res ; 70(1): 12-3, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20028868

RESUMO

Systems biology takes an interdisciplinary approach to the systematic study of complex interactions in biological systems. This approach seeks to decipher the emergent behaviors of complex systems rather than focusing only on their constituent properties. As an increasing number of examples illustrate the value of systems biology approaches to understand the initiation, progression, and treatment of cancer, systems biologists from across Europe and the United States hope for changes in the way their field is currently perceived among cancer researchers. In a recent EU-US workshop, supported by the European Commission, the German Federal Ministry for Education and Research, and the National Cancer Institute of the NIH, the participants discussed the strengths, weaknesses, hurdles, and opportunities in cancer systems biology.


Assuntos
Pesquisa Biomédica/tendências , Neoplasias , Biologia de Sistemas , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA